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Preface 

This book seeks to meld into a coherent whole the results 
of a number of different research projects in philosophical logic 
that were originally undertaken separately. The purpose is 
to create a general account of philosophical semantics. I had 
intended to include much of this material in Language and 
Thought, but that book became too long and it seemed advis- 
able to separate out the more formal parts of the book and 
provide them with a different vehicle of publication. The re- 
sulting material does still presuppose some of the conclusions 
defended in Language and Thought, so it has proven neces- 
sary to begin the present book with a sketch of the theory of 
language presented there. That sketch is contained in Chapter 
Two, which also contains a further development of the theory 
of modalities begun in Language and Thought. The theory of 
possible worlds contained in Chapter Three was originally in- 
tended for publication in Language and Thought, but was later 
excised from it. A very early version of some of the material 
in Chapter Three appeared as an article entitled "Plantinga on 
possible worlds" (in Profiles: Plantinga), although some of 
the most important conclusions of Chapter Three are dia- 
metrically opposed to conclusions drawn in that article. Chap- 
ter Four continues my perennial project of trying to get the 
analysis of counterfactuals right. It is based closely on my 
article "A refined theory of counterfactuals" (The Journal of 
Philosophical Logic), but corrects certain aspects of the theory 
presented in that article. The new material is concerned pri- 
marily with the analysis of counterfactuals at nondeterministic 
worlds. Chapter Five tries again to analyze causation in terms 
of counterfactuals. The first part of Chapter Five is approxi- 
mately the same as the first part of my article "Causes, con- 
ditionals, and times" (Pacific Philosophical Quarterly), but 
the second part, which deals with the role of time in causation, 
is completely new. It became apparent to me shortly after the 
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publication of "Causes, conditionals, and times" that the as- 
sumptions about time upon which the second part of that ar- 
ticle was based were indefensible. Chapter Five replaces those 
false assumptions with what I hope are true assumptions and 
then rebuilds the theory on that basis. Chapter Six attempts to 
sort out the philosophical significance of formal (model-the- 
oretic) semantics. This material was originally slated for pub- 
lication in Language and Thought, but later deleted from that 
book. Although the formal results were obtained in approxi- 
mately their present form as early as 1978, they have not pre- 
viously been published. 

This book has profited enormously from the helpful com- 
ments I have received from several philosophers. The chapter 
on possible worlds has evolved out of many long discussions 
I have had on that subject with A1 Plantinga. On a number of 
important occasions, he has convinced me of the error of my 
ways. (I do not seem to be as successful in convincing him 
of the error of his ways, but perhaps he is just getting even 
with me for my sybaritic lifestyle in southern Arizona.) As is 
evident from the footnotes, the material on counterfactuals has 
been improved in response to objections raised by Donald Nute 
and Pave1 Tichy to earlier versions of the material. The anal- 
ysis of causation reflects in large measure the successful at- 
tacks Glenn Ross made on my earlier analysis. Finally, the 
entire book has profited from the diligent refereeing Donald 
Nute and Tom McKay did for Princeton University Press. Their 
work was extraordinarily careful, and their remarks were very 
helpful and constructive. 

Tucson, Arizona 
March 1983 
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Introduction 

Philosophical semantics has become a thriving branch of 
philosophy, and the accomplishments of philosophical seman- 
tics have had repercussions throughout philosophy. We can 
probably regard philosophical semantics as having begun with 
Rudolph Carnap in the forties.' It took a great leap forward 
in 1959 with Saul Kripke's publication of the first complete- 
ness theorem in modal logic.' Perhaps the next major step was 
Richard Montague's development of intensional logic in the 
late sixties and early seven tie^.^ The publication of Alvin 
Plantinga's The Nature of Necessity in 1974 brought philo- 
sophical semantics to the attention of the general philosophical 
populace. The work on counterfactuals by Robert stalnaker4 
and David Lewis5 in the late sixties and early seventies, to- 
gether with David Kaplan's underground manuscript Demon- 
stratives, began the now widespread application of philo- 
sophical semantics to topics other then modal logic. Current 
work in philosophical semantics applies it to the philosophy 
of language, ethics, epistemology, probability, and the phi- 
losophy of mind. 

The principal tool of philosophical semantics is the concept 
of a possible world. Carnap began it all by talking about state 
descriptions. Kripke talked about possible worlds in his 1959 
completeness proof for modal logic, but it is arguable that pos- 
sible worlds served only heuristic purposes there. Possible 
worlds were taken more and more seriously with each advance 

' See Carnap [1942], [1943], and [1947]. 
* Kripke [1959]. 

See the collection of papers in Thomason [1974]. 
Stalnaker [1968]. 
Lewis [I9721 and [1973]. 
Kaplan [1976]. 
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in philosophical semantics. Plantinga and Lewis take them very 
seriously indeed. Today talk of possible worlds is taken lit- 
erally, and it is maintained that possible worlds are real en- 
tities that actually exist and to which we can appeal in phil- 
osophical analysis. 

There are two importantly different kinds of philosophical 
semantics: realistic and formal. Realistic semantics makes ex- 
plicit appeal to possible worlds, proposing logical analyses 
framed directly in terms of possible worlds. The simplest ex- 
ample of such an analysis is that identifying necessary truth 
with truth at all possible worlds. For a more complicated ex- 
ample, consider Lewis's theory of counterfactuals.' Taking 
possible worlds and the relation of "comparative similarity" 
as basic, Lewis proposes the following truth conditions for 
counterfactuals: 

(1.1) (P  > Q )  is true at a world w iff there is a world at 
which (P&Q) is true that is more similar to w than is 
any world at which (P&-Q) is true. 

Realistic semantical theories abound, including competing 
theories of counterfactuals, theories of meaning, theories of 
personal identity, and theories of probability. 

In contrast, formal semantics does not make explicit appeal 
to possible worlds. Possible worlds loom faintly in the back- 
ground, guiding the hand of the formal logician, but formal 
semantical theories are not framed directly in terms of possible 
worlds. Formal semantics is carried on entirely within set the- 
ory. The basic tool of formal semantics is the concept of a 
model, which is a kind of set-theoretic structure. Consider, 
for example, the simplest of all formal semantical theories- 
the truth-functional semantics for the propositional calculus. 
We begin by contructing a logical notation based upon a set 
At of atomic formulas and the logical constants 1 and A. We 
define a model to be any function mapping At into {0,1}. Truth- 
in-a-model M  is then defined recursively as follows: 

(a) If P  is atomic the P  is true in M  iff M(P) = 1 ;  

' See Lewis [1973] 
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(b) 1 P  is true in M iff P is not true in M ;  
(c) (PAQ) is true in M iff P and Q are both true in M .  

We say that a formula is truthfunctionally valid iff it is true 
in every model. 

It is important to realize that although this definition uses 
common semantical words like 'true', it uses them in a special 
way, with the result that it makes truth-functional validity a 
purely mathematical concept defined abstractly within set the- 
ory. But validity is supposed to have more than purely math- 
ematical significance. The truth-functionally valid formulas are 
supposed to represent a certain body of necessary truths. In 
precisely what sense do they represent necessary truths? When 
asked this question, logicians typically wave their hands and 
mutter something about possible worlds. Models are said to 
"correspond to" possible worlds, and truth in all models 
"corresponds to" truth in all possible worlds. It is not at all 
clear, however, what this alleged correspondence amounts to. 

Despite its popularity and apparent fruitfulness, the foun- 
dations of philosophical semantics are in doubt. Although phi- 
losophers of widely differing persuasions make free use of 
possible worlds, there is less than complete agreement about 
the nature of possible worlds and how they are related to, for 
instance, necessary truth, propositions, and meaning. These 
questions bear most directly on realistic semantics, and they 
will occupy our attention throughout most of this book. In the 
final chapter we will take up the foundations of formal se- 
mantics, which will turn out to be a morass. There are estab- 
lished techniques used in formal semantics, but it is not clear 
what to make of the results obtained by these techniques. It 
is remarkable that few practitioners of formal semantics have 
even raised the question of its significance. I will attempt to 
answer this question by drawing precise connections between 
formal semantics and realistic semantics. 

The purpose of this book is to clarify the foundations of 
both realistic and formal semantics. Realistic semantics is based 
upon the concept of a possible world, so our most basic task 
will be to make that concept clear. Before we can do that, 
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however, we must examine a number of other logical concepts 
that are presupposed by theories of possible worlds. These in- 
clude the concepts of proposition, statement, and state of af- 
fairs. I have recently developed a theory of these  concept^,^ 
and parts of that theory will be presupposed by the present 
book. Chapter Two will sketch as much of that theory as will 
be required for understanding. Chapter Three will turn to the 
analysis of possible worlds, and various accounts will be ex- 
amined and a preferred account proposed. The use of possible 
worlds in realistic semantics will be illustrated in Chapters Four 
and Five, where analyses will be proposed for counterfactuals 
and causation. Although the topics of Chapters Four and Five 
are of general philosophical interest, their role in the present 
book is illustrative. The reader who is not interested in these 
topics and does not feel the need for illustrations can proceed 
directly to Chapter Six, where an investigation of formal se- 
mantics is undertaken. The material in Chapter Six is more 
technical than the rest of the book, but conversely the rest of 
the book can be understood without assimilating the material 
in Chapter Six. 

Pollock [I9821 



Sketch of a Theory of 
Language 

Although the basic tool of philosophical semantics is the 
concept of a possible world, philosophical semantics also makes 
indispensable appeal to other philosophical entities. In partic- 
ular, philosophical semantics presupposes certain views about 
the nature of language and the relation between language and 
various logical entities like propositions. An adequate theory 
of philosophical semantics must be based, at least loosely, on 
an adequate account of language. The purpose of this chapter 
is to sketch, and in some ways expand upon, a theory of lan- 
guage that I developed and defended in detail in my book Lan- 
guage and Thought. 

1. Propositions 

1.1 Fine-Grained Objects of Belief 

Philosophers have used the term 'proposition' in a variety 
of ways, so to avoid confusion we must settle upon a single 
precise use of the term. As I shall use the term, propositions 
are possible objects of belief or disbelief. That is, in order for 
(p to be a proposition, it must be possible for there to be a 
person who either believes (D or disbelieves 9.' This is a nec- 

' The point of stating the requirement disjunctively is that there may be 
propositions (e.g., explicit contradictions) that cannot be believed, but only 
disbelieved. We avoid taking a stand on that question by requiring only that 
propositions be possible objects of belief or disbelief. I am indebted to Jose 
Benardete for this way of avoiding the problem. In connection with this re- 
quirement, I assume that there are no necessary restrictions on the com- 
plexity of propositions entertained by persons. This is required for the class 
of propositions to be closed under conjunction, negation, etc. 
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essary condition for being a proposition, but as I shall use the 
term it is not a sufficient condition, for the reasons I will now 
explain. 

Roughly, propositions are supposed to be what people be- 
lieve, and we want it to be the case that people believe the 
same thing (i.e., have the same belief) iff they believe the 
same proposition. There is an obstacle to imposing this re- 
quirement on propositions, however, and that is that under 
different circumstances we adopt different criteria for believ- 
ing the same thing. For example, suppose I believe that there 
is a typewriter on my desk, and I believed that yesterday too. 
Then we may be willing to say that I believed the same thing 
yesterday as I do today. But there is also a reason for insisting 
that what I believed yesterday was not the same thing as what 
I believe today. What I believed yesterday was about a dif- 
ferent time (viz., yesterday) from what I believe today is about. 
As such, what I believed yesterday might well have been false, 
while what I believe today is true. But then it seems to follow 
that they are not the same thing after all. We can accommo- 
date both of our conflicting inclinations by distinguishing be- 
tween two different kinds of propositions: transient proposi- 
tions, whose truth values can vary with time, and nontransient 
propositions, which are about fixed times and whose truth val- 
ues cannot change with time. Given this distinction, we can 
say that yesterday I believed the same transient proposition 
that I believe today, but a different nontransient proposition. 

Although the distinction between transient and nontransient 
propositions is helpful, it does not fully account for the vari- 
ation in our criteria for believing the same thing. For example, 
suppose Susan and I each believe that Herbert has a mustache. 
In believing this, we may be thinking of Herbert in quite dif- 
ferent ways, but it may still be granted that we believe the 
same thing. On the other hand, if we are thinking about Her- 
bert in different ways then our thoughts are distinguishable, 
and this may incline us to insist that we are really believing 
two different things. Although our beliefs are both about Her- 
bert, they could have been about different individuals and could 
even have had different truth values. Again, we can handle 
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this sort of case by distinguishing between two different ob- 
jects of belief. When I think about Herbert, I must think about 
him in some particular way, i.e., under some particular mode 
of representation. We can either take that mode of represen- 
tation to contribute to the identity of the proposition believed, 
or we can ignore the mode of representation and say that we 
believe the same proposition just as long as we believe the 
same thing of the same object (regardless of how we are think- 
ing of that object). Propositions of the latter sort have been 
called directly referential propositions; we might call those of 
the first sort indirectly referential propositions. 

It seems that there is a finest possible criterion for deciding 
whether two people (or one person in two possible situations) 
believe the same thing. This requires them to be thinking of 
objects in the same way, to be holding the beliefs at the same 
time, and in some cases (e.g., in first-person belief) to be the 
same person; there may also be additional requirements. Ob- 
jects of belief or disbelief individuated by this criterion are 
maximally fine-grained. I propose to reserve the term prop- 
osition for these maximally fine-grained objects of belief or 
disbelief. That is the way the term will be used throughout 
this book. 

The decision to reserve the term 'proposition' for maximally 
fine-grained objects of belief should not be taken to impugn 
the integrity of less fine-grained objects of belief. We believe 
coarse-grained objects of belief by believing fine-grained ob- 
jects of belief. For example, I believe the directly referential 
proposition that Herbert has a mustache by thinking of Herbert 
in some particular way and believing a fine-grained object of 
belief that encodes that mode of representation. Coarse-grained 
objects of belief can be characterized by describing the range 
of propositions by believing which one believes the coarse- 

It is important to recognize that this criterion combines both internal 
criteria (having to do with psychological states in the narrow sense of Putnam 
[1975]) and external criteria fixing indexical parameters (such as speaker 
identity and the time of the thought). Otherwise we would encounter twin- 
earth-type difficulties. For further discussion of this, see Language and 
Thought, 1 1 .  
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grained object of belief. We might very reasonably identify 
coarse-grained objects of belief with sets of propositions. For 
example, the directly referential proposition that Herbert has 
a mustache would be identified with the set of all propositions 
ascribing having a mustache to Herbert under different modes 
of representation. 

It is commonly (but not universally) supposed that propo- 
sitions have structures and constituents. For example, the 
proposition that all philosophers are wise has a structure that 
might be symbolized as 

where P is the concept of being a philosopher and W is the 
concept of being wise. The doctrine of propositional structure 
and constituents is problematic. I assume that it is to be spelled 
out in terms of the corresponding notion of the structure of 
our thoughts, but I will not have much to say about that here. 
I will simply assume that propositions can be individuated in 
terms of their structure and constituents and attribute to prop- 
ositions however much structure that requires. 

1.2 Concepts 

The most familiar kind of propositional constituent is a con- 
cept. When we believe a proposition that is about a particular 
object, we believe something of that object. Concepts are what 
can be believed or disbelieved of objects. Objects "fall un- 
der" or exemplify concepts. Just as for objects of belief, on 
different occasions we employ finer- or coarser-grained cri- 
teria for believing the same thing of an object. I will take 
concepts to be individuated by the finest-grained criteria for 
deciding whether we believe the same thing of an object. That 
is required for concepts to be constituents of propositions. 

1.3  Propositional Designators 

If we are to describe propositions in terms of their structure 
and constituents, we need more than just concepts as constit- 
uents. We also need a variety of logical operators (e.g, con- 
junction and negation), and we need some kind of constituent 
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that picks out the objects a proposition is about. I will call the 
latter propositional designators. Thought about an object al- 
ways involves some mode of representation, and these modes 
of representation are encoded in propositions by propositional 
designators. The most familiar kind of propositional desig- 
nator is a definite description (built out of concepts-not out 
of linguistic descriptions). Just what else should be included 
in an inventory of propositional designators is a matter of some 
dispute. A once-popular view was that definite descriptions 
are the only propositional designators there are. However, 
Kripke [1972] and Donnellan [I9721 argued vigorously against 
the thesis that in order to refer to an object one must be able 
to supply an identifying description of that object, and their 
arguments seem best interpreted as indicating that one can think 
about an object without thinking about it under a description. 
I have recently argued that we most commonly think about an 
object with which we are quite familiar in terms of a nondes- 
criptive kind of designator I call a de re designator." In Lan- 
guage and Thought I argued that there are other nondescrip- 
tive designators as well. Everyone has a nondescriptive way 
of thinking of himself, and I called the corresponding prop- 
ositional designators personal designators. We also think of 
the present time nondescriptively, in terms of temporal des- 
ignators. The details of this inventory are debatable, but I of- 
fer it now only to illustrate the possible variety of kinds of 
propositional designators. Precisely what kinds of proposi- 
tional designators there are will not be of great importance for 
the present investigation. 

Given concepts, propositional designators, and various log- 
ical operators, we can describe many propositions in terms of 
their structure. For this purpose I will use & for conjunction, 
v for disjunction, - for negation, + for the material condi- 
tional, *-Ã for the material biconditional, (Vx) for the universal 
quantifier, (3) for the existential quantifier, and == for iden- 
tity. I will write the simple proposition that results from pre- 
dicating the concept a of the propositional designator 8 as 

In Pollock [I9801 and [1982]. 
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'"(~8)" ' .  More generally, if a is an n-place concept we can 
write r(a:8,, . . . ,&,,)l. Thus, we might describe a proposition 
as having the form 

(Vx)(3y)[(a:x,y) ^ ((?:x) v (ry))] .  

If we leave free variables in such a formula, we have instead 
described a complex concept in terms of its structure. 

1.4 Propositional Modalities 

Two important modal properties of propositions are nec- 
essary truth and a priori truth. There are, of course, numerous 
philosophical problems associated with these modal proper- 
ties, but for now I will simply assume that the notions make 
sense, without endorsing any particular theory regarding them.4 
Where ip is a proposition, let us abbreviate "ip is necessarily 
true1 as "Nec(ip)l. We can define possibility and entailment 
and equivalence relations in terms of this modality: 

(1.1) Poss(ip) iff -Nec(-ip). 

(1.2) ip entails 9 iff Nec(ip -  ̂9). 

(1.3) ip is equivalent to 9 iff Nec(ip * 9). 

Until fairly recently, it was generally believed that a prop- 
osition is necessarily true iff it is a priori true, but that now 
seems doubtful. It is still generally supposed that all a priori 
truths are necessary,' but it is no longer regarded as certain 
that all necessary truths are a priori true. For example, Fer- 
mat's conjecture is the following proposition: 

If Ferrnat's conjecture is true, every instance of this general- 

A number of traditional objections to these notions were discussed and 
dismissed in Language and Thought. A theory of apriori truth was proposed 
in Pollock [1976], Chapter Ten, and some tentative proposals were made 
regarding the relationship between these two modal properties. 

Kripke [I9721 denied this, but his arguments have not generally been 
accepted. I would urge that his putative example of a contingent a priori 
truth is not really a priori. 
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ization is provable by simple numerical calculation, but there 
may be no way to prove the generalization itself. If every in- 
stance is provable, all the instances are a priori and hence 
necessary; and if every instance is necessary, the generaliza- 
tion is necessary. But the generalization may not be a priori. 
Thus there may be necessary truths that are not a priori. 

Necessity and possibility are properties of propositions. We 
also employ necessity and possibility as modal operators. For 
example, the proposition that it is necessary that 2+2 = 4 is 
a modal proposition. The proposition Dtp is about whatever tp 
is about, as opposed to the proposition that (p is necessary, 
which is about tp. Given necessity as a property, how is ne- 
cessity as an operator to be understood? It is natural to try to 
define the one in terms of the other by taking Dtp to be the 
proposition that tp is necessary. But what proposition are we 
talking about when we talk about "the proposition that tp is 
necessary"? We can refer to tp in many different ways, such 
as John's favorite proposition or the first proposition enter- 
tained by Bertrand Russell on the morning of April 7, 1921. 
How we refer to ip makes a difference to what proposition is 
referred to as 'the proposition that tp is necessary'. For ex- 
ample, even if John's favorite proposition is the same prop- 
osition as the first proposition entertained by Bertrand Russell 
on the morning of April 7, 1921, the following two propo- 
sitions are distinct: 

(1) the proposition that John's favorite proposition is nec- 
essary; 

(2) the proposition that the first proposition entertained by 
Bertrand Russell on the morning of April 7, 1921, is 
necessary. 

If we are to identify Dtp with some proposition to the effect 
that tp is necessary, we must seize upon a particular propo- 
sitional designator 8 that designates tp and then, letting N be 
the concept of being necessarily true, identify Dtp with (N:8). 
But what designator might 8 be? Clearly, 6 cannot be the same 
designator as in either (1) or (2) above. (1) is about John, and 
(2) is about Bertrand Russell, but Dq is about neither. Similar 
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difficulties arise for any designator that designates (p in terms 
of contingent properties it happens to have. If this general pro- 
posal for the analysis of Dtp is to work, it must proceed in 
terms of some kind of propositional designator that designates 
(p necessarily. Is there such a designator, and does it make the 
analysis plausible? 

The answer to this question turns upon our having a special 
way of thinking about propositions. There is a difference be- 
tween entertaining a proposition and thinking about it. If I 
think to myself that 2+2 = 4, I am entertaining the propo- 
sition that 2+2 = 4. But I can also think to myself that the 
proposition that 2+2 = 4 is true. This is to entertain a prop- 
osition about the proposition that 2+2 = 4. When I do this, 
I do not normally think of the proposition that 2+2 = 4 in 
terms of some contingent description of it. I think of it in 
terms of its content. This is a special way of thinking of a 
proposition. If we could not think of propositions in this way, 
we would have no way of judging that a proposition is true 
or necessary. Suppose I think about (p in this special way, 
perhaps believing that (p is true. I thereby entertain a propo- 
sition about (p, so the proposition I entertain contains a prop- 
ositional designator designating (p. That designator corre- 
sponds to my special way of thinking about (p. Let us call such 
designators logical designators. I will write the logical des- 
ignator for (p as [ (q)] .  There must be analogous logical des- 
ignators for concepts. My proposal is now that we can identify 
modal propositions with propositions employing logical 
designators: 

I earlier distinguished between D(p and the proposition that (p 

is necessary by saying that Dtp is about whatever (p is about, 
while the proposition that (p is necessary is about (p itself. (1.4) 
seems to fly in the face of that distinction. But it does so only 
partially. To think of (p in terms of ((p) is to think of (p in a 
very special way-in terms of its content. Thus there is a sense 
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in which, although (N: ((p)) is about (p, it is about (p in terms 
of whatever (D is about, and so can also be viewed as being 
about whatever (p is about. My suggestion is then that it is the 
existence of logical designators that makes modal propositions 
and modal operators possible. 

1.5 De Re Necessity 

The necessity of a proposition is de dicto necessity. To be 
contrasted with this is de re necessity, which is a relation be- 
tween an object and a concept. For example, Wilfrid Sellars 
is necessarily such that he is not the number two, and the 
number two is necessarily such that it is the square root of 
four. If a is a concept, let us abbreviate "x is necessarily such 
that it exemplifies a1 as "Nec[x,a]'. Let "Poss[x,aJ1 mean 
r-Nec[x,-a]l. The notion of de re necessity is universally 
acknowledged to be problematic. The preceding examples are 
clear cases of de re necessity, but more interesting cases are 
invariably contentious. Still, as there are clear cases, the no- 
tion must make sense, and it plays an essential role in phil- 
osophical semantics. We will find that it is presupposed by 
the notion of a possible world. 

We can define a de re modal operator just as we defined a 
de dicto modal operator. This operates on concepts to gen- 
erate modal concepts. Let N& be the two-place concept ex- 
pressed by ^x is necessarily such that it is yl. Then if a is a 
concept, we can define a modal concept as follows: 

This has the result that x exemplifies Da iff Nec[x,a]. 
We have used '0' for symbolizing both de dicto and de re 

necessity. That is the normal convention, but ambiguity 
threatens when we consider relational cases of de re necessity 
(i.e., cases in which an n-tuple of objects has a property nec- 
essarily). For example, Kripke [I9721 alleges that a person is 
necessarily such that he has the parents he does-he could not 
have had different parents. According to such "geneological 
essentialism", if x and y are the parents of z ,  then (x,y,z) is 



11. Sketch of a Theory of Language 

necessarily such that if z exists then x and y are the parents 
of z. Let us liberalize our notation as follows: 

(1.7) Nec[x,, . . . ,xn,a] iff Nec[(xl , . . . ,xn) ,a]; 

(1.8) (Ua:x1 ,..., x,,) = (Ndr:xl ,..., x,,,(a)). 

Our notation becomes ambiguous when we combine this with 
our way of symbolizing the structures of complex concepts. 
For example, suppose p is a two-place concept and 8 and 8* 
are propositional designators. We can form a one-place con- 
cept by filling one of the argument places in (3 by 8: (p:x,S). 
From this we can form the modal concept D(p:x,8) and apply 
it to 8*, yielding the de re modal proposition (D(P:x,8):8*). 
This notation is awkward, and it is tempting to simplify it by 
writing (Dp:8*,8). But this does not come to the same thing. 
In (0((3:x,8):8*) the necessity is only de re with respect to 6*, 
but in (0(3:8*,8) the necessity is de re with respect to both 8* 
and 8. For example, let ((3:x,y) be the concept expressed by 
'if x and y exist then they are identical', and let 8 and 8* both 
be the designator expressed by 'the tallest man in the world'. 
Then (D(3:8*,8) is the proposition that the tallest man in the 
world is necessarily such that if he exists then he is self-iden- 
tical. This proposition is true. But ((Up:x,8):8*) is the prop- 
osition that the tallest man in the world is necessarily such 
that if he exists then he is the tallest man in the world. This 
proposition is false. We can avoid this ambiguity while still 
simplifying our notation by subscripting the modal operator 
with the designators with respect to which it is de re: 

There is a certain ambiguity in the English locutions we 
ordinarily use in ascribing de re necessities. Suppose it is 
claimed that a particular table is necessarily such that it is 
made of wood. "x is made of wood1 implies rx exists1, so it 
seems that rx is necessarily such that it is made of wood1 
should imply rx exists necessarily1; but of course it does not 
imply that. "x is necessarily such that it is made of wood1 
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means ^x is necessarily such that if it exists then it is made 
of wood1. Most attributions of de re necessity are to be under- 
stood analogously as attributing the necessity of something 
conditional on existence. However, there are some attributions 
that cannot be understood in that way. For example, rx exists 
necessarily1 does not mean rx is necessarily such that if it 
exists then it exists1. The English expression rx is necessarily 
such that it is F1 must be recognized as ambiguous in this 
respect, and we must treat it with corresponding care. As it 
is used here, '0' does not symbolize necessity conditional on 
existence. Thus if we are to symbolize ^x is necessarily such 
that it is made of wood1, we must write ^DX((E:x) Ã‘ (Wix))' 
(where E is the concept of ex i~ t ing ) .~  

The principal philosophical difficulty regarding de re mo- 
dalities appears to be in explaining their source. Various the- 
ories have been proposed for the source of de dicto necessity, 
the main ones being conventionalism and logical intuitionism, 
but those theories cannot be generalized to de re necessity, 
and there are no other very plausible theories waiting in the 
wings. This is the main reason philosophers are suspicious of 
de re necessity. They feel that they do not understand this 
notion. On the other hand, as this book progresses we will 
find that there are an enormous number of common philo- 
sophical purposes for which de re necessity is indispensable 
and in which its use has generally gone unnoticed. De re ne- 
cessity enjoys much more frequent use than philosophers com- 
monly realize. One locus of such use concerns abstract entities 
of various sorts. For example, where a is a cardinal number, 
the assertion that it is possible for there to be a many physical 
objects in the world is de re with respect to a.  Philosophers 
have tended to use modal operators freely in connection with 
abstract entities, perhaps supposing that de re modalities in- 
volving abstract entities can always be replaced by de dicto 
modalities. That can always be done for de re modal claims 
involving propositions, concepts, or propositional designators, 

Plantinga [1974] objects to this notion of de re necessity, maintaining 
instead that all de re necessity should be conditional on existence. This is 
discussed below in Chapter Three, section five. 

17 
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because we can always reformulate them as de dicto modal 
claims involving the logical designators (9). However, there 
is no good reason to suppose that de re necessity relative to 
sets, possible worlds, and cardinal numbers can be eliminated 
in similar ways. A second area in which the common use of 
de re necessity has been overlooked is in the formulation of 
logical analyses. It is generally supposed that logical analyses 
can be formulated in terms of the de dicto necessity of the 
universal closure of a biconditional. For instance, a logical 
analysis of a concept a would have the form 

where "qxl is some open formula expressing the analysans. 
But I will argue in Chapter Three (section five) that logical 
analyses cannot be adequately formulated in this way. Instead, 
they require both de dicto and de re necessity and have the 
form: 

Our use of the subscript notation "DX1 will bring forcefully to 
our attention just how often we employ de re necessity in phil- 
osophical logic. This is not a problem we can ignore. It thus 
becomes very important to have a reasonable theory of de re 
necessity. Unfortunately, I do not have such a theory to pro- 
pose. A few remarks can be made concerning the relationship 
between de re necessity and de dicto necessity, but the major 
problems remain unresolved. 

Although de re necessity and de dicto necessity are different 
modalities, there are interconnections. One of the most im- 
portant is that de dicto necessity provides one source of de re 
necessity. The following holds in general: 

(1.10) If Nec((Vx)(a:x)) then for any object z, 
Nec[z,((E:z) -  ̂(a :~) ) ] .  

In light of (1. lo), it cannot be denied that there are any de re 
necessities. The strongest claim that can be made is that (1.10) 
provides the only source of de re necessity, and hence de re 
necessity is reducible to de dicto necessity. I doubt, however, 
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that such a conservative view of de re necessity can be correct. 
There seem to be other sources of de re necessity as well. For 
example, I would tentatively propose that objects can be class- 
ified in terms of "basic sortals" and that if any object ex- 
emplifies a particular basic sortal then it does so necessarily. 
E.g., if Michael is a person, then Michael is necessarily a 
person (and hence necessarily not a number). A second source 
of de re necessity lies in identities. Although this was once a 
matter of considerable dispute, it is now generally agreed that: 

(1.11) If a = b then Nec[a,b,((E:x) -  ̂(x = y) ) ] .7  

There are no doubt other sources of de re necessity as well. 
Thus, I consider it extremely doubtful that de re necessity is 
reducible to de dicto necessity. 

Conversely, however, it is plausible to suppose that de dicto 
necessity is definable as de re necessary truth for propositions. 
Letting T be the concept of being true, the proposal is: 

(1.12) Nec((p) iff Nec[(p,T]. 

In other words, for (p to be necessarily true is for (p to be 
necessarily such that it is true. The ready availability of this 
reduction of de dicto necessity to de re necessity suggests that 
de re necessity is the basic kind of necessity, and it may be 
fruitless to look for independent theories of de dicto necessity. 

2. Statements 

2.1 The Diagram of a Statement 

Statements are products of assertion, i.e., they are what we 
assert when we state something.' What is no doubt the most 
popular contemporary view identifies statements and propo- 
sitions. The central thesis of Language and Thought was that 

' The earlier resistance to this principle seems to have stemmed from a 
confusion of de re necessity with de dicto necessity. 

'Statement' is ambiguous in English between the act of stating and what 
is stated. I am using it only in the latter sense. 
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this dogma of contemporary philosophy of language is false. 
In retrospect, much of the recent work on proper names and 
demonstratives points firmly in that direction, but this has not 
generally been appreciated. The view associated with Frege 
and Russell (perhaps unfairly) is that when one makes a state- 
ment by uttering a sentence containing a proper name, the 
function of the name is to express a definite description that 
becomes a constituent of the proposition asserted. But Kripke 
[1972] and Donnellan [I9721 have argued persuasively that 
one can rarely find a definite description that is a plausible 
candidate for the sense of a use of a proper name. They have 
instead championed the historical connection theory, accord- 
ing to which the referent of the name is determined by a chain 
of historical connections between particular uses of the name. 
They coupled this view of reference with the semantical thesis 
that sentences containing proper names are used to express 
directly referential propositions. The latter view is the deno- 
tation theory. 

Directly referential propositions are not propositions in my 
sense; they are coarse-grained objects of belief. The claim that 
proper names are used to state directly referential propositions 
is really the claim that it makes no difference how the speaker 
and his audience are thinking about the referent of the 
name-members of the audience have fully understood the 
speaker just as long as they come to think of the correct object 
as the referent and understand what the speaker is saying about 
that object. In making a statement, one is ordinarily "putting 
thoughts into words". The speaker entertains a certain prop- 
osition, utters a sentence appropriately related to it, and if the 
communication is successful then the members of the audience 
come to entertain propositions related in certains ways to the 
speaker's proposition. Let us call the proposition entertained 
by the speaker his sent proposition and those entertained by 
the members of the audience the received propositions. The 
traditional view was that in order for communication to be 
successful, the sent and received propositions must be the same. 
The denotation theory can be regarded as relaxing this re- 
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quirement, insisting that successful communication occurs just 
as long as the sent and received propositions are about the 
same object and attribute the same thing to it. 

Although I am convinced that the denotation theory is false, 
it constitutes an important advance over the traditional theory. 
No reasonable theory of communication could require the sent 
and received propositions to be the same. The ways in which 
speaker and hearers think about an object will typically reflect 
their idiosyncratic relationships to the object, and neither will 
know precisely how the other is thinking of the object. That 
cannot preclude successful communication. There must be some 
connection between the sent and received propositions, but 
they need not be identical. The nature of the required con- 
nection is a function of what statement is being made. For 
example, if a speaker uses a definite description attributively 
to refer to an object, saying '"The F is G1, then both he and 
his audience must be thinking of the object as "the F ", and 
it is plausible to suppose that the sent and received proposi- 
tions must be the same in this c a s e .  On the other hand, if the 
speaker uses a proper name to refer to his object, it is quite 
implausible to suppose that the sent and received propositions 
must be the same. For example, if I say 'Richard Feynman is 
a famous physicist', I may be thinking of him as 'whoever 
Kripke was talking about in "Naming and necessity" '. If 
Feynman's mother happened to be in my audience, my utter- 
ance would lead her to entertain a proposition (her received 
proposition) wherein she thinks of Richard Feynman quite dif- 
ferently. But surely that does not imply that I have not suc- 
cessfully communicated with her. In connection with proper 
names, it is initially plausible to follow the denotation theory 
and say that the sent and received propositions need only be 
about the same object-the only constraint on the proposi- 
tional designators contained in those propositions is that they 
designate the same object. 

As becomes apparent in Language and Thought, this is only true if F 
is a "conceptual" predicate. 
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The statement that is being made is what determines the 
range of possible sent and received propositions. Furthermore, 
having specified this range of propositions, we seem to have 
completely characterized the content of the communication and 
thereby determined what statement is being made. This indi- 
cates that a statement can be described by describing this range 
of propositions. The possible sent and acceptable received 
propositions for a statement may vary with the circumstances 
under which the statement is being made. For example, the 
possible sent and acceptable received propositions for the di- 
rectly referential statement that an object x is F will be a func- 
tion in part of what descriptions happen to be satisfied by x 
(because the speaker and hearers can think of x in terms of 
those descriptions). Different features of the circumstances of 
utterance may be involved in determining the possible sent and 
acceptable received propositions for different statements. Let 
us call these the dynamic parameters of the statement. A state- 
ment can then be described by describing the possible sent and 
acceptable received propositions for each person relative to 
each possible assignment of values to the dynamic parameters. 
This is encoded in what I call the diagram of the statement. 
Let S be the function that assigns to each person S the set S(S) 
of possible sent propositions for that person, and let R be the 
function which assigns the set of acceptable received propo- 
sitions for that person.10 S and R may vary depending upon 
the values of the dynamic parameters. The diagram of the 
statement is then the function that yields the ordered pair (S,R) 
of functions when applied to each assignment of values to the 
dynamic parameters. The diagram of a statement can be re- 
garded as giving us the information content of the statement. 
The more narrowly the possible sent propositions are con- 
strained, and the more similar the acceptable received prop- 
ositions are to the possible sent propositions, the more closely 
the audience's thoughts must resemble the speaker's and hence 

10 For some kinds of statements the possible sent and acceptable received 
propositions are the same, but for other kinds of statements (e.g., first-person 
statements) they are different. See Language and Thought for details. 



2.  Statements 

the greater the information conveyed by making the statement. 
For example, a statement involving a definite description con- 
tains more information than the corresponding directly refer- 
ential statement. 

In Language and Thought I developed an entire theory of 
language based upon this conception of statements and their 
diagrams. To illustrate, consider proper names. According to 
the denotation theory, when a speaker utters a sentence con- 
taining a proper name, the statement he makes is directly re- 
ferential. I argued at length in Language and Thought that that 
account of proper names is inadequate. The reader is referred 
to Language and Thought for the whole story, but the simplest 
objection to the denotation theory is that it makes it impossible 
to make a statement by using a nonreferring proper name. For 
example, a person who does not know any better might make 
a statement by saying 'Bourbaki is a famous French mathe- 
matician'.ll It is undeniable that the person is making a state- 
ment, but that would be impossible according to the denota- 
tion theory because without a referent there would be no pos- 
sible sent or acceptable received propositions-there would be 
nothing for the speaker or his audience "to think". For this 
and other reasons, the denotation theory must be replaced by 
a more elaborate theory. 

Donnellan, Kaplan, and Kripke have all recommended 
combining the historical connection theory with the denotation 
theory. The idea is that the historical connection theory pro- 
vides a theory of reference, and the denotation theory provides 
the corresponding theory of meaning. In fact, however, these 
two theories are incompatible. They are competing theories 
rather than complementary ones. The reason for this is that 
the denotation theory already entails a theory of reference. The 
speaker's sent proposition contains a propositional designator 
that designates the referent, and this designator determines the 

' A group of French mathematicians published their work collectively 
under the fictitious name 'Bourbaki', and many people were initially taken 
in by this and assumed that 'Bourbaki' was the name of an individual 
mathematician. 
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referent of the name. There is no room left for the referent to 
be determined by any kind of historical connection.12 

I believe that the intuitions behind the historical connection 
theory are actually semantical intuitions, and the theory should 
not be taken as a theory of reference at all. In Language and 
Thought I proposed a theory of meaning for proper names that 
can be regarded as a semantical version of the historical con- 
nection theory. Given that the denotation theory is false, it 
follows that there must be more serious constraints on the 
propositional designators contained in the sent and received 
propositions than their merely designating the same object. It 
is the nature of these constraints that the historical connection 
theory is really getting at. There are various kinds of "para- 
sitic connections" between the propositional designators in- 
volved in different sent propositions. For example, in saying 
'Richard Feynman is a famous physicist', a speaker may be 
thinking of Richard Feynman as 'the person Jones was just 
talking about'. Such parasitic (or historical) connections as this 
enable us to string together the sent propositions of different 
speakers, and when they can be connected in this way, they 
are sent propositions for the same statement. This can be turned 
into a precise account of the diagram of the statement made 
by uttering a sentence containing a proper name.13 

This discussion of proper names has been very sketchy, but 
it is intended merely to illustrate the account of statements in 
terms of their diagrams. The details of the analysis of proper 
names will not be relevant to the present book, but this brief 
sketch should make it clear how much power we gain by 

l 2  Tom McKay has suggested to me that this incompatibility can be avoided 
by taking the historical connection theory to be a theory about what deter- 
mines the designatum of the speaker's sent designator rather than as a theory 
directly about linguistic items in public language. I have never understood 
the theory in that way, but we can understand it in that way and it becomes 
an interesting theory. Diana Ackermann ([1979], [1979a], and [1980]) has 
proposed a theory of this general sort. My own feeling is that it succumbs 
to the considerations adduced in Language and Thought, 60-81, in connec- 
tion with de re belief, but that is a different sort of objection than the one 
suggested in the text. 

l 3  See Language and Thought for the details. 
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adopting this view of statements. It becomes possible to con- 
struct linguistic theories that could not even be formulated if 
we insisted upon identifying statements with propositions. 

2.2 Attributes 

I have remarked that the notion of propositional structure is 
problematic. But as we will now see, if we accept the notion 
of propositional structure, we can make sense of statemental 
structure too. Statements can be viewed as constructed out of 
various statemental constituents. The simplest kind of state- 
mental constituent is an attribute. We can characterize attri- 
butes as what can be stated of objects. For example, we can 
state of Herbert that he has a mustache. Just as we can talk 
about sent and received propositions for statements, we can 
talk about sent and received concepts for attributes. The most 
prevalent view of attributes has identified them with concepts. 
But if we consider an attribute like that expressed by 'brother 
of Robert', it is apparent that it cannot be a concept because 
of the way in which 'Robert' functions. If a speaker makes a 
statement by saying 'John is a brother of Robert', he could be 
sending different propositions (with different propositional 
designators corresponding to 'Robert'), and members of his 
audience could be receiving different propositions. In each of 
these propositions, what corresponds to 'brother of Robert' 
will be a concept of the form (@:x ,8 ) ,  but different proposi- 
tions may contain different designators 8 and hence different 
concepts corresponding to 'brother of Robert'. Thus, the at- 
tribute expressed by 'brother of Robert' cannot be identified 
with any of these concepts. 

If we turn to simple attributes like that of being aluminum 
or being a tiger, it is initially more plausible to suppose that 
the traditional view is correct and that these attributes are con- 
cepts. One way of interpreting the views of Kripke [I9721 and 
Putnam [1975], however, is as urging that these attributes are 
not concepts. For example, Putnam [I9751 has noted that he 
thinks of aluminum quite differently than a metallurgist does, 
but that he and the metallurgist can both make the same state- 
ment by saying 'This kettle is made of aluminum'. Putnam 



11. Sketch of a Theory of Language 

and the metallurgist think of aluminum in terms of concepts, 
but they employ different concepts. Despite their associating 
different concepts with the word 'aluminum', they can still 
use it in making the same statement. The concepts in terms 
of which they think of aluminum are their sent concepts. Or 
if one of them makes a statement about aluminum to the other, 
the hearer will think of aluminum differently than the speaker 
and so will employ a received concept different from the 
speaker's sent concept. These sent and received concepts com- 
prise the diagram of the attribute of being aluminum. In gen- 
eral, the diagram of an attribute A is a function that assigns 
to each set of values of the dynamic parameters the ordered 
pair (S,R) of functions where for each person S, S(S) is the 
set of possible sent concepts for A for S under those circum- 
stances and R(S) is the set of acceptable received concepts for 
A for S under those circumstances. 

In Language and Thought I constructed a theory of predi- 
cates and attributes that I will sketch here without argument.14 
Some predicates literally have definitions, in something like 
the traditional sense. Such predicates express attributes con- 
structed logically out of simpler constituents. Most syntacti- 
cally simple predicates are not like this, however; they are 
instead handled as follows. Objects are classified as being of 
various kinds. Some kinds, like electron, can be described in 
a number of different ways, and none of those descriptions is 
more central to the kind than any other. What makes different 
descriptions equally appropriate is that it is a physical law that 
anything satisfying one of the descriptions will also satisfy the 
others, or as I will say, the descriptions (and the concepts 
expressed by them) are nomically equivalent. A class of nom- 
ically equivalent concepts can be taken to make up a nomic 
kind; for example, the nomic kind electron is comprised of 
the set of all nomically equivalent descriptions of electrons. I 
urged that predicates like 'aluminum' and 'tiger' "connote" 
nomic kinds.15 1 called predicates connoting nomic kinds syn- 

' Chapters Five through Seven. 
I s  The relation of connoting is made precise in Language and Thought, 

154ff. Our putative social knowledge regarding something is the set of state- 
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thetic predicates. The attributes expressed by synthetic pred- 
icates are determined by the nomic kinds they connote. Roughly 
speaking, when one uses a synthetic predicate one makes a 
statement that is directly referential with respect to the nomic 
kind. More accurately, if I say 'That kettle is made of alu- 
minum', the possible sent and acceptable received proposi- 
tions for my statement have the form r6 is made of K"' where 
K is any propositional designator designating the nomic kind 
connoted by 'aluminum'. Thus, I may think of aluminum as 
'the stuff most kettles are made o f  and a metallurgist may 
think of aluminum as 'the element of atomic weight 26.98', 
and yet we can both be making the same statement. 

Because a nomic kind is constituted by the set of concepts 
describing it, the kind is necessarily such that it is described 
by those concepts. Thus, for example, it becomes a necessary 
truth that water is H20,  and accordingly the statement that 
water is H 2 0  is necessarily true. I will say more about this 
below. 

Given attributes and logical operators, we can describe the 
structures of many statements. For example, the statement that 
every kettle is made of aluminum can be said to have the 
structure 

where K is the attribute of being a kettle and A is the attribute 
of being aluminum. To describe the statement in this way is 
to give a shorthand description of its diagram. To say that the 
statement has this form is just to say that a proposition tp is a 
possible sent (or acceptable received) proposition for the state- 
ment iff cp has the form 

where K is a possible sent (or acceptable received) concept for 
K and a is a possible sent (or acceptable received) concept 

ments about it that are accepted as known by society at large. For example, 
it is regarded as known that electrons are negatively charged. Then, roughly, 
the nomic kind connoted by a predicate is the kind that maximally satisfies 
our putative social knowledge involving that predicate. 
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for A. Thus, talk of statemental structure is reduced to talk of 
propositional structure. To describe a statement in terms of its 
structure is to describe its diagram in terms of the structure of 
its possible sent and acceptable received propositions. 

2.3 Statemental Designators 

Consider the statement that Herbert has a mustache. The 
sent propositions for this statement have the form 

where p is a possible sent concept for the attribute of having 
a mustache and 8 is the propositional designator in terms of 
which the speaker is thinking of Herbert. The received prop- 
ositions have the same form, where 8 is now a propositional 
designator the hearer is receiving by virtue of the speaker us- 
ing the name 'Herbert'. The propositional designators thus as- 
sociated with the name can be collected together into the dia- 
gram of a statemental constituent we can call a statemental 
designator. The propositional designators are the sent and re- 
ceived designators for the statemental designator. Then we can 
describe the statement that Herbert has a mustache as having 
the form 

where M is the attribute of having a mustache and 9 is the 
statemental designator expressed by the speaker's use of 'Her- 
bert'. To say that the statement has this form is just to say 
that the possible sent and acceptable received propositions have 
the corresponding form 

where p is any possible sent (or acceptable received) concept 
for the attribute M and 8 is any possible sent (or acceptable 
received) designator for 9.  

I suggested above that when one makes a statement by ut- 
tering a sentence containing a proper name, the possible sent 
and acceptable received propositions are tied together by var- 
ious parasitic relations between the ways the speakers and 
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hearers may be thinking of the referent. These parasitic rela- 
tions comprise constraints on the possible sent and acceptable 
received designators for the statemental designator expressed 
by the use of the proper name. I call statemental designators 
of this sort hereditary designators. 

2.4 Statemental Modalities 

Thus far we have taken necessary truth and a priori truth 
to be propositional modalities, but these propositional modal- 
ities can be used to generate similar statemental modalities. 
Statements are not objects of belief in the same sense as prop- 
ositions are, so they cannot literally be known a priori. In- 
stead, epistemic attitudes toward statements must be cashed 
out in terms of epistemic attitudes toward the sent and re- 
ceived propositions for the statements. Thus it is very natural 
to define apriority for statements as follows: 

(2.1) If I )  is a statement, il; is a priori true iff il; is necessarily 
such that the possible sent and acceptable received 
propositions for il; are all a priori true. 

We can define an analogous notion of necessary truth: 

(2.2) If il; is a statement, il; is internally necessary iff il; is 
necessarily such that the possible sent and acceptable 
received propositions for il; are all necessarily true. 

There is another natural way to define necessity for state- 
ments, viz., as de re necessary truth: 

(2.3) If I) is a statement, il; is externally necessary iff il; is 
necessarily such that it is true. 

One would naturally expect internal and external necessity 
to coincide. Interestingly enough, they do not. Their diver- 
gence reflects the fact that, because of their characterization 
in terms of their diagrams, statements have more structure than 
propositions. For example, the propositions ( ( x  =" y):8,8) and 
((x == x):8) are the same proposition, namely, the proposition 
that might be written more simply as (8 == 8). But where Q is 
a statemental designator, the statements ((x == y):9,9) and 
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( (x  = x ) :9 )  are distinct. The sent and received propositions for 
( ( x  == x):9)  all have the form ( ( x  = x):8)  (i .e. ,  ( 8  == 8 ) )  where 
8  is a possible sent or acceptable received designator for 9 .  
Consequently, the statement 

( 2 . 4 )  ( E d )  + ( ( x  == x ) :Q)  

is both internally and externally necessary. On the other hand, 
the sent and received propositions for the statement 

( 2 . 5 )  ( ( E : x )  -+ ( ( x  = y ) :9 ,9 )  

have the form 

( 2 . 6 )  (E:x)  + ( ( x  == y) :8 ,8*)  

where 8 and 8* may be distinct possible sent or acceptable 
received designators for 9 .  If 8  and 8* are distinct, then ( 2 . 6 )  
need not be necessary, and hence ( 2 . 5 )  will not normally be 
internally necessary. On the other hand, ( 2 . 5 )  is externally 
necessary. This is because although the sent and received 
propositions for this statement need not be necessary, they must 
always be true, i.e., 8  and 8* are sent or received designators 
for the same statemental designator 8  and hence must desig- 
nate the same object. A statement is true iff its sent and re- 
ceived propositions are true, so because it is necessary that all 
the sent and received propositions for ( 2 . 5 )  are true, it is nec- 
essary that this statement is true. Thus ( 2 . 5 )  is externally nec- 
essary. But as we have seen, it is not internally necessary. 

If we accept the general account of proper names as ex- 
pressing hereditary designators, this surprising divergence of 
internal and external necessity can be illustrated as follows. 
Consider a child whose tutor tells him about Thales both as 
'that crazy philosopher who thought everything was made out 
of water' and as 'that early entrepreneur who cornered the grain 
market'. But suppose the child mistakenly thinks that these 
were two different men, each called 'Thales'. The child's use 
of the name 'Thales' is parasitic on its use by his tutor, but 
the tutor is using the name to express the same hereditary des- 
ignator when he talks about Thales as a philosopher and when 
he talks about Thales as an entrepreneur. Thus, without re- 
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alizing it, the child is also using the name to express the same 
hereditary designator in both contexts. If the child were to say 
'If he existed, then Thales was Thales', with the intention to 
be talking about the philosopher with the first occurrence of 
the name and the entrepreneur with the second, the child would 
regard himself as making a false statement. The statement he 
would be making would not be a priori true and would not 
be internally necessary, but unbeknownst to the child, it would 
be externally necessary. 

In Language and Thought I argued that similar considera- 
tions can be used to explain and partially defend the view of 
Kripke [I9721 and Putnam [I9751 that no distinction can be 
made between physical necessity and logical necessity as they 
apply to "natural kinds". For example, they have urged that 
if water is in fact H20  (as a matter of physical necessity), then 
there are no possible worlds in which water is not H20.  As I 
noted above, -on my analysis of synthetic predicates in terms 
of nomic kinds, physically necessary statements about nomic 
kinds are externally necessary. But they are not internally nec- 
essary. For example, one possible sent proposition for the 
statement that water is HzO is the contingent proposition that 
the stuff that comes out of the tap is H20.  This simultaneously 
explains the intuitions of Kripke and Putnam and the intuitions 
of their detractors. The latter have urged that it "could have 
turned out" that water is not H20,  and hence the statement 
that water is H20  cannot be necessary. Kripke responded that 
it is "epistemically possible" for water not to have been HzO, 
but not "metaphysically possible". The observation that it is 
epistemically possible for water not to have been H20  really 
just amounts to the observation that the sent and received 
propositions for the statement are not themselves necessary. 
Thus, as Kripke uses the term, epistemic necessity might rea- 
sonably be identified with internal necessity and metaphysical 
necessity with external necessity. Consequently, the charac- 
terization of statements in terms of their diagrams enables us 
to make sense of this perplexing dispute. 

The internal and external necessity of statements are species 
of de dicto necessity. We can define analogous notions of de 
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re internal and external necessity. Where A is an attribute, an 
object is internally necessarily such that it is A iff the object 
necessarily exemplifies every possible sent or acceptable re- 
ceived concept for A: 

(2.7) Nec,[x,A] iff A is necessarily such that if a is any 
possible sent or acceptable received concept for A then 
Nec[x,a]. 

On the other hand, an object is externally necessarily such that 
it is A iff it is necessarily such that it exemplifies A: 

(2.8) NecE[x,A] iff x and A are necessarily such that x ex- 
emplifies A. 

Just as there are externally necessary statements that are not 
internally necessary, there are cases of objects being exter- 
nally necessarily such that they exemplify certain attributes 
without being internally necessarily such that they exemplify 
those attributes. 

2.5 Statemental Modal Operators 

In discussing propositions we introduced necessity both as 
a property and as an operator. It must also be possible to in- 
troduce an operator for statements. This is because the most 
common use of 'necessary' in English is as a sentence oper- 
ator, and it seems clear that the statement expressed by "It is 
necessary that P1 ought to be of the form D+ where 0 is a 
statement operator. It is not possible to introduce an operator 
on statements in the same way as we did the operator on prop- 
ositions. That would require us to have something like logical 
designators for statements, but there do not seem to be such 
designators. We are unable to think of statements in the kind 
of direct fashion in which we can think of propositions. We 
tend instead to think of statements in terms of descriptions like 
'what Mary said'. Lacking logical designators for statements, 
we must introduce statemental modal operators in some other 
way. I suggest that this can be done in terms of the diagrams 
of statements, taking El+ to be a statement for which the sent 
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and received propositions are those of the form Dtp where tp 

is a sent or received proposition for $: 

(2.9) If il; is a statement, D+ is a statement whose possible 
sent (or acceptable received) propositions (for any val- 
ues of the dynamic parameters) are those of the form 
Dtp where ip is a possible sent (or acceptable received) 
proposition for il;. 

In other words, when one states Oil;, what one is thinking 
(i.e., the sent proposition) is a proposition of the form Dip 
where ip is a possible sent proposition for $. 

If there is to be such a statement as 01) satisfying (2.9), 
there must be certain constraints on the diagrams of state- 
ments. An obvious constraint is that all of the possible sent 
and acceptable received propositions for a given statement 
(relative to the actual values of the dynamic parameters) must 
have the same truth value. It is by believing these propositions 
that the speakers and hearers accept a statement. If they could 
differ in truth value, it could happen that some of the speakers 
and hearers are right in accepting the statement and that others 
are mistaken in accepting the same statement. That is clearly 
absurd. An analogous constraint on the diagram of an attribute 
is that all of the sent and received concepts must have the same 
extension. Similarly, all of the sent and received designators 
for a statemental designator must designate the same object. 

Given the above truth constraint on the diagram of a state- 
ment, it follows that if there is to be such a statement as Oil;, 
then relative to any assignment of values to the dynamic pa- 
rameters of +, if any of the possible sent or acceptable re- 
ceived propositions for $ are necessary then they must all be 
necessary. Otherwise the truth constraint would be violated for 
Q+, because some of its possible sent or acceptable received 
propositions relative to those values of the dynamic parame- 
ters would be true and some of them would be false. In Lan- 
guage and Thought I took this to indicate that there must be 
a modal constraint on the diagrams of statements to the effect 
that relative to any assignment of values to the dynamic pa- 
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rameters of a statement, if any of the possible sent or ac- 
ceptable received propositions for that statement are necessary 
then they are all necessary. There appear, however, to be clear 
counterexamples to this. Consider the following statement: 

(2.10) (E:3) + ((x = y):Q,9). 

Some of the possible sent propositions for this statement have 
the form 

(2.11) (E:8) + ((x = y):8,8) 

and hence are necessary, but others have the form 

(2.12) (E:8) -Ã ((x = y):8,8*) 

where 8 and 6* are distinct propositional designators, and hence 
they need not be necessary. It must be concluded that the modal 
constraint is not always satisfied. But if a statement i); does 
not satisfy the modal constraint, there can be no such state- 
ment as Di);. Thus, application of a modal operator to a state- 
ment does not always yield a statement. This is a surprising 
conclusion, but not unintuitive when we consider specific ex- 
amples. Recall the example of the child who thought that Thales 
the philosopher and Thales the entrepreneur were two different 
men, and imagine him saying, 'Necessarily, Thales (the phi- 
losopher) was Thales (the entrepreneur)'. Would you under- 
stand what he was saying? I would not. De dicto (as opposed 
to de re)  necessity does not seem to be applicable in such a 
context. 

Satisfaction of the modal constraint is a necessary condition 
for there to be such a statement as Eli);, but it is not sufficient. 
It seems clear that mi);, if it exists, cannot be a contingent 
statement. That is, if Qi); is true then it must be necessarily 
true, i.e., externally necessary. This implies that i); satisfies a 
stronger modal constraint requiring that if there is an assign- 
ment of values to the dynamic parameters relative to which 
some possible sent or acceptable received proposition for i); is 
necessary, then all possible sent and acceptable received prop- 
ositions for i); relative to all assignments of values to the dy- 
namic parameters must be necessary. Otherwise, Hi); could be 
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true in one possible situation (with one set of values for the 
dynamic parameters) and false in another. Given this strong 
modal constraint, it follows that there is a simple relationship 
between our de dicto statemental operator and internal necessity: 

(2.13) If \1> is a statement, 0) is true iff $ is internally 
necessary. 

In many ways, external necessity is a more natural modality 
than internal necessity. Can we construct a modal operator 
EE that bears the same relationship to external necessity as 0 
bears to internal necessity? It is interesting that there does not 
seem to be any way to do it. In order for there to be such a 
statement as Mil;, it must be possible to characterize it in terms 
of its diagram, but there seems to be no way to construct a 
diagram for Mil; that would have the result that Mil; is true iff 
>)) is externally necessary. This will be of some importance 
when we consider the relationship between possible worlds 
and statemental modalities. Note that it has the consequence 
that although the statement that water is H 2 0  is externally nec- 
essary, the modal statement that it is necessary that water is 
H 2 0  is false. 

We can construct a de re statemental modal operator on 
analogy to our construction of our de dicto statemental modal 
operator. This is an operator that operates on an attribute A 
to convert it into the modal attribute UA. UA can be described 
in terms of its diagram: 

(2.14) If A is an attribute, UA is an attribute whose possible 
sent (or acceptable received) concepts (for any values 
of the dynamic parameters) are those of the form Da 
where a is a possible sent (or acceptable received) 
concept for A. 

We saw that the existence of the statement D+ required there 
to be a modal constraint on the diagram of il;. The existence 
of the modal attribute DA requires a similar modal constraint 
on the diagram of A. If (OA:9) is true, the designatum of 9 
must be necessarily such that it exemplifies A. Consequently, 
if there is an assignment of values to the dynamic parameters 
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for which some object x is necessarily such that it exemplifies 
some possible sent or acceptable received concept for A rel- 
ative to those values of the dynamic parameters, then x is nec- 
essarily such that it exemplifies all possible sent and accept- 
able received concepts for A relative to all possible assignments 
of values to the dynamic parameters. This modal constraint 
has the consequence that: 

(2.15) x exemplifies DA iff Nec,[x,A]. 

I noted above that the modal statement that it is necessary 
that water is H20  is false, despite the fact that the statement 
that water is H 2 0  is necessary. That is a bit puzzling, because 
given the necessary truth of the statement that water is H20,  
one is strongly inclined to think he could be saying something 
true by saying 'It is necessary that water is H20' .  The expla- 
nation for this is that English modal locutions do not distin- 
guish very clearly between de re and de dicto necessity. One 
could be saying something true, but it would be the de re 
modal statement that water and H20  (the nomic kinds) are 
necessarily such that everything of the first kind is also of the 
second kind. 

3. Sentences 

3 .1  The Meaning of a Sentence 

A few years ago, the most prevalent view of meaning iden- 
tified the meaning of a (declarative) sentencei6 with the prop- 
osition asserted by uttering that sentence. Given the distinction 
between statements and propositions, a natural modification 
of that view would identify the meaning of a sentence with 
the statement made by uttering the sentence. In recent years, 
however, philosophers have become increasingly aware of the 
phenomenon of indexicality. To say that a sentence is index- 
ical is to say that, without any change in meaning, it can be 

l6 Throughout, when I say 'sentence' I mean 'declarative sentence'. For 
a discussion of nondeclarative sentences, see Language and Thought, 253- 
265. 
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used to make different statements under different circumstan- 
ces, with the statement made being a function (at least in part) 
of the circumstances of utterance. It is obvious that a sentence 
like 'He is here' is indexical. This sentence can be used to 
make many different statements about different individuals and 
different places. Upon reflection, it appears that almost all 
sentences are indexical. Even a sentence like 'The Empire State 
Building is in New York' is indexical. The statement made 
by uttering this sentence is at least a function of the time of 
utterance. When one says 'The Empire State Building is in 
New York', one means that it is now in New York. There 
may come a time when that is false. For example, it might be 
moved to Lake Havasu, Arizona, and re-erected alongside the 
London Bridge. There might be a few sentences that can only 
be used to make a fixed statement (e.g., '2+2 = 4'), but these 
are rare exceptions. 

If a sentence is indexical, there is no unique statement ex- 
pressible by the sentence and hence no single statement with 
which the meaning of the sentence can be identified. It seems, 
however, that the meaning of the sentence determines what 
statements can be made by using it under various circumstan- 
ces. Furthermore, once one has described what statements can 
be made by uttering a sentence under all possible circumstan- 
ces, one has described the meaning. So rather than taking the 
meaning of a sentence to be a single statement, it seems more 
reasonable to regard it as consisting of all the different state- 
ments it can be used to make under different circumstances. 
Let us call those features of the circumstances determining 
what statement is made by uttering a sentence the pragmatic 
parameters of the sentence. Then the meaning of a sentence 
can be described by describing what statements can be made 
by uttering it when the pragmatic parameters have different 
values. Let the S-intension of the sentence be the function that 
assigns to each set of values of the pragmatic parameters the 
statement made by uttering the sentence in circumstances in 
which the pragmatic parameters have those values. The mean- 
ing of the sentence is then comprised by its 5-intension. 

It is useful to distinguish between (1) the meaning of a sen- 
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tence and (2) its sense on a particular occasion. The sense of 
a sentence on a particular occasion is the statement made by 
using it on that occasion. The meaning of a sentence (i.e., its 
5-intension) is the function that determines its sense on each 
possible occasion of its use.17 

3.2 Predicates 

The normal role of a predicate in a sentence is to select an 
attribute to be incorporated into the statement by uttering the 
sentence. That attribute will be called the sense of the pred- 
icate on that occasion of utterance. The meaning of the pred- 
icate determines its sense on different occasions, so it seems 
reasonable to regard the meaning as a function from pragmatic 
parameters to attributes. This is the A-intension of the predi- 
cate. For some predicates, such as 'brother of John', the sense 
will obviously vary from circumstances to circumstances, but 
it is apt to seem that for most simple predicates the senses will 
be the same on all occasions. For example, it may be proposed 
that the sense of 'tiger' is always the attribute of being a ti- 
ger.18 If that is correct, this account accomodates it by taking 
the A-intension of 'tiger' to be a constant-valued function. 

3.3  Singular Terms 

The normal role of a singular term (e.g., a proper name, 
definite description, or demonstrative) in a sentence is to se- 
lect a statemental designator for incorporation into the state- 
ment one makes by uttering the sentence. This statemental 
designator is the sense of the singular term on that occasion. 
Then, once again, the meaning of the singular term will be 

" The distinction between meaning and sense is, I believe, the same as 
the distinction Kaplan ([I9761 and [1979]) has recently been drawn between 
content and character. The distinction is not a new one, going back at least 
to P. F. Strawson [I9501 and Richard Cartwright [1962]. I learned it from 
Cartwright in the early sixties. It has been "rediscovered" at least twice, 
first by Richard Montague and then by David Kaplan. 

la I argued in Language and Thought that this is inaccurate. The sense of 
'tiger' is always the attribute of being a tiger, but what attribute that is may 
change. The change is a function of changes in our putative social knowledge 
about tigers (see n. 13). 
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comprised by the D-intension of the term, which is a function 
mapping the pragmatic parameters to the sense of the term. 
For example, I suggested above that the sense of a proper 
name is a statemental designator whose possible sent and ac- 
ceptable received designators are tied together by historical or 
parasitic connections. Advocates of a directly referential the- 
ory of proper names would instead take proper names to ex- 
press "directly referential statemental designators", the latter 
requiring of their possible sent and acceptable received des- 
ignators only that they all designate the same object. Either 
theory is readily accommodated within the present account of 
meaning. 

3 .4  Sentence Modalities 

The notion of an analytic sentence has played an important, 
though controversial, role in philosophy. It has probably as- 
sumed more importance than it should because of the mis- 
guided desire of many philosophers to avoid propositions and 
statements and to frame their theories in terms of sentences. 
Be that as it may, we are now in a position to define four 
different sentence modalities. Any one of these is a reasonable 
candidate for the traditional notion of an analytic sentence, but 
I have chosen to reserve that term for the first of them: 

(3 .1)  If P is a declarative sentence and A is its S-intension, 
then P is (1) analytic, (2) internally necessary, (3) ex- 
ternally necessary, or (4) weakly analytic; iff A is nec- 
essarily such that if TT is any possible assignment of 
values to the pragmatic parameters, then A(TT) is (1) 
a priori true, ( 2 )  internally necessary, (3) externally 
necessary, or (4) true. 

Given the assumption that a priori propositions are neces- 
sary, it follows that a priori statements are internally neces- 
sary, and hence analytic sentences are internally necessary. 
Internally necessary statements are also externally necessary, 
and externally necessary statements are true, so it follows that 
internally necessary sentences are externally necessary and ex- 
ternally necessary sentences are weakly analytic. In other words, 
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our sentence modalities form a heirarchy in the order listed. 
In addition, two of the inclusions are proper inclusions, and 
the third may also be a proper inclusion. The sentence 'I exist' 
is weakly analytic (i.e., it can only be used to make a true 
statement) but not externally necessary (i.e., the statement it 
is used to make is not necessarily true). We have already seen 
that sentences employing predicates connoting nomic kinds can 
be externally necessary without being internally necessary. And 
if Ferrnat's conjecture is necessary but not a priori, a sentence 
expressing it will be internally necessary but not analytic. 

I have already remarked that the most common use of 'nec- 
essary' in English is within the sentential modal operator 'it 
is necessary that', with this phrase being equivalent to the ad- 
verb 'necessarily' used in its de dicto sense. In philosophy, 
this is abbreviated as 'D', and its use is very common. It is 
of considerable importance to understand how these operators 
work. It now seems clear that modal sentences are used to 
express modal statements: 

(3.2) If P is a declarative sentence then An is an 5'-intension 
of "It is necessary that P1 iff there is an 5-intension 
A of P such that for any possible assignment TT of val- 
ues to the pragmatic parameters, if A(T) = IJJ then AQ(r) 
= w  

Philosophers have often felt that modal predicates should be 
less problematic than modal operators, and so they have tried 
to reduce the latter to the forrner.19 There is no way to do that 
at the level of sentences. In particular, the following is false: 

(3.3) For any values of the pragmatic parameters, "DP1 
expresses a true statement iff P is internally necessary. 

In order for P to be internally necessary, "UP1 must express 
a true statement given any values of the pragmatic parameters. 
The reason (3.3) fails is that there are sentences that some- 
times express internally necessary statements and other times 

l9 See particularly Quine [I9531 and Skyrms [I9781 for positive views on 
the matter, and Montague [I9631 and Otte [I9821 for negative views. 
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express contingent statements. An example is 'That is so', which 
can be used to express any statement at all. Even if (3.3) were 
true, it could not give us the meaning of '0' because the state- 
ment that P is internally necessary is a metalinguistic state- 
ment (it is about the sentence P) whereas the statement ex- 
pressed by '"UP1 is not normally a metalinguistic statement. 
"UP1 is about whatever P is about. 

I concur with the view that modal predicates are more basic 
than modal operators. That is, in fact, the way the present 
analysis has proceeded. But the reduction cannot proceed at 
the level of either statements or sentences; it must occur at the 
level of propositions. In order to make the translation from 
modal predicates to modal operators, we must have the logical 
designators ( i p ) ,  and these only exist for propositions and prop- 
ositional constituents. 

The adverb 'necessarily' occurs in English as a de re modal 
operator when we say 'Two is necessarily the square root of 
four' or 'Wilfrid Sellars is necessarily not the number two'. 
Here it is functioning as an operator converting predicates into 
modal predicates. It can be described as follows: 

(3.4) If F is a predicate then An is an A-intesion of "OF' 
(or "necessarily F1) iff there is an A-intension A of F 
such that for any possible assignment TT of values to 
the pragmatic if A(=) = A then An(=) = 
DA. 

Thus, for example, if the sense of rN is F1 is the statement 
(A:d) then the sense of rN is necessarily F1 is (DA:d), or 
equivalently Da(A: 9). 

English provides us with devices for distinguishing between 
de dicto and de re necessity. For example, we can express de 
re necessity by saying "t is necessarily such that it is F1 and 
de dicto necessity by saying '"It is necessary that t is F1. Un- 
fortunately, we do not always adhere to this distinction, often 
using the latter to express de re necessity instead of de dicto 
necessity. One of the main reasons for introducing an artificial 
logical notation is to avoid ambiguities like this that are pres- 
ent in natural language. It is quite surprising to note, then, 
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that the standard logical notation in modal logic is subject to 
this same ambiguity, only more so. If we write r(Vx)OFxl, 
we know that '0' is symbolizing de re necessity and that the 
sense of the sentence is (Vx)Dy(A:x). But if we write '"DFP, 
it is unclear whether the necessity is to be de dicto (in which 
case the sense of the sentence is D(A:d)) or de re (in which 
case the sense of the sentence is Da(A:c))). The ambiguity can 
easily be resolved by extending our subscript notation to sen- 
tences and writing the de re sentence as rD,Ftl. I will follow 
this practice of attaching subscripts to modal operators when- 
ever there is danger of a de relde dicto ambiguity. 

Once it has been pointed out, the distinction between rDFtl 
and rDyFrl is so obvious that one would suppose it could not 
have confounded professional logicians. It is rather amazing 
to observe that standard modal logic provides us with no way 
to make this distinction, and eminent logicians have been led 
astray by not making the distinction. For example, it was once 
common to find logicians arguing that 

always expresses a truth, and then "explaining" that this should 
not be confused with the unqualified sentence 

which need not express a truth. This led to obvious problems 
concerning universal instantiation in modal logic. What should 
have been said here is that 

(Vx)(Vy)[x = y -  ̂D(x exists -> x = y)] 

and 

express true statements, but 

t, = t2 -  ̂D(tl exists -Ã ti = ti) 

need not. 
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1. Introduction 

The central tool of philosophical semantics is the concept 
of a possible world. It has become customary to "explain" 
necessary truth as truth at all possible worlds. Possible worlds 
are employed in providing foundations for modal and inten- 
sional logics, analyzing counterfactual conditionals and law 
statements, establishing a framework for probability theory, 
and much more. But it has never been entirely clear just what 
possible worlds are supposed to be. David Lewis [I9731 says 
that possible worlds are "ways things could have been". Saul 
Kripke [I9721 describes possible worlds as "counterfactual 
situations". Although there is much intuitive appeal to such 
notions, there is also considerable disagreement about how the 
concept of a possible world is to be defined or analyzed. It 
might be insisted that the notion is primitive and unanalyza- 
ble,' but that makes it rather mysterious and of questionable 
utility in the clarification of other concepts. The two most 
popular moves have been to identify possible worlds with 
maximal consistent sets of propositions, and to identify them 
with maximal possible states of affairs. I will consider these 
two alternatives in detail in sections two and three. 

The best way to judge a proposed concept of a possible 
world is in terms of what is supposed to be accomplished by 
appealing to possible worlds. There are two major desiderata 
and two minor desiderata: 

(1) De dicto necessity is supposed to be analyzable in terms 
of possible worlds as follows: 

(1.1) Nec(q) iff <p is true at all possible worlds. 

' That is the position of David Lewis [1973]. 
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Traditionally, in (1.1) (p was taken to be a proposition, We 
might also require the truth of (1.1) when <p is a statement, in 
which case we must consider whether it is to hold for internal 
necessity or external necessity. For the time being,however, 
it is best to hold this question in abeyance. This makes it con- 
venient to have a single term that can be interpreted variously 
as meaning 'proposition', 'statement', or 'proposition or state- 
ment', depending upon the outcome of our investigations. I 
will use the term 'assertion' for this purpose. Much of our 
account of possible worlds can be constructed without decid- 
ing which meaning we should give to 'assertion'. We will then 
return to the question of how we should understand 'assertion' 
in various contexts. It is also convenient to have a term that 
is neutral between 'concept', 'attribute', and 'concept or at- 
tribute', and for this purpose I will use 'quality'. I will use 
the term 'designator' as neutral between 'propositional des- 
ignator', 'statemental designator', and 'propositional or sta- 
temental designator'. Given these conventions, we can state 
our first desideratum for possible worlds as requiring that (1.1) 
hold for any assertion (p, leaving open what assertions are. 

(2) The second major desideratum is that de re necessity 
should be analyzable in terms of possible worlds as follows: 

(1.2) Nec[x,a] iff x exemplifies a at all possible worlds. 

Here we take a to be a quality, remaining noncommittal on 
what qualities are. Note that if we take qualities to include 
attributes, we must distinguish between internal and external 
necessity in (1.2). 

The two preceding desiderata are the most important ones, 
but there are also two minor desiderata: 

(3) The truth conditions for quantified modal assertions are 
supposed to be expressible as first-order conditions involving 
quantification over possible worlds. For example, the follow- 
ing is supposed to hold: 

(1.3) D(3x)El(a:x) is true iff (Vw)[if w is a possible world 
then there is an object x existing in w such that x ex- 
emplifies a at every possible world]. 
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This third desideratum can be regarded as a generalization of 
the first two. At least if we are talking about internal neces- 
sity, (1.1) and (1.2) appear to be equivalent, respectively, to: 

(1.4) D(D is true iff (D is true at all possible worlds. 

(1.5) Ug(a:8) is true iff 8 designates some object x that ex- 
emplifies a at all possible worlds. 

(4) The fourth desideratum is a generalization of the third. 
It can only be stated rather vaguely as the requirement that 
possible worlds are to be generally useful in the analysis of 
various logical concepts such as modal operators, counterfac- 
tual conditionals, and probability. It may also be required that 
possible worlds be of use in a general theory of meaning, and 
that they provide a basis for formal semantics and formal logic. 

2. Possible Worlds as World Books 

The simplest conception of possible worlds is as world books. 
World books are maximal consistent sets of assertions. Mak- 
ing this precise: 

(2.1) A set of assertions is consistent iff it is possible for 
all of its members to be true together. 

(2.2) A world book is any consistent set of assertions B that 
is such that if (D is any assertion not in B then (D cannot 
be consistently added to B (i.e., Bu{q} is inconsistent). 

Given any assertion tp, either it or its negation must be true. 
Thus, the following holds: 

(2.3) Necessarily, the set of all true assertions is a world 
book. 

Consequently, any reasonable construal of possible worlds must 
have the result that the set of assertions true at a particular 
world constitutes a world book. Let us define: 

As, for example, in Lewis [1972a] and Montague [I9701 and [1973]. 
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(2.4) If w is a possible world, B is the world book for w iff 
B is the set of all assertions true at w.  

This suggests identifying possible worlds with their world 
books. This is one way of understanding possible worlds as 
"ways things could have been". 

It will follow from the discussion below that world books 
satisfy the first desideratum for possible worlds, i.e., an as- 
sertion is necessary iff it is true at all possible worlds. This 
is probably the main reason the identification of possible worlds 
with world books has seemed so attractive. The satisfaction 
of the second desideratum is extremely problematic, however; 
it requires that Nec[x,a] iff x exemplifies a at every possible 
world. But if possible worlds are just sets of assertions, what 
does it mean to say that an object x exemplifies a at a world 
w? That can only make sense if x's exemplifying a at w con- 
sists of the members of some set X of assertions being true at 
w (i.e., being members of w). It seems that the only way X 
could play this role is by there being a designator 8 such that 
(a:8)GX and the other members of X somehow determine that 
8 designates x at w.  How can a set of assertions being true at 
w determine that 8 designates x at w? This is just the problem 
of transworld identity set against the background assumption 
that transworld identity must be determined by what assertions 
are true at a world. 

I will call theories conforming to the latter assumption qual- 
itative theories of transworld identity, because they attempt to 
reduce transworld identity to the qualities possessed by objects 
at different worlds. There are just two possible kinds of qual- 
itative theories of transworld identity. Let us define: 

(2.5) (p is a singular assertion about x iff (p is an assertion 
and there is some quality a such that Da,x,,n(ip is true 
iff x exemplifies a) .  

Taking assertions to be propositions, I endorsed this move in Pollock 
[1976], although at that point I was unclear about what I meant by 'prop- 
osition'. Plantinga [I9741 appears to endorse a similar move, but I doubt 
that he means by 'proposition' what I mean here by 'proposition'. 
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Singular assertions are those equivalent to assertions that are 
necessarily such that they are about certain fixed objects. An 
assertion about x that is not singular will be called general. 
For example, a general assertion about x might be about x by 

' 
virtue of containing some definite description that x exempli- 
fies only contingently. Assertions are about objects by virtue 
of containing designators designating those objects. Thus, in 
order for ip to be necessarily such that it is about a particular 
object x, ip must be equivalent to an assertion containing a 
designator that is necessarily such that it designates x. More 
precisely: 

(2.6) 8 is a haecceity of x iff Us,Jif x exists then 8 desig- 
nates x, and if x does not exist then 8 does not des- 
ignate anything]. 

Then it seems that an assertion is singular by virtue of being 
equivalent to an assertion containing a haecceity of some ~ b j e c t . ~  

Let us define: 

(2.7) a is an essence of x iff Da,x(Vy)[.y exemplifies a iff 
y =x]. 

On the traditional assumption that all designators were definite 
descriptions, it followed that 8 is a haecceity of x iff 8 is a 
definite description of the form i a  for some a that is an es- 
sence of x. However, we have already noted several examples 
of haecceities not related to essences in this manner. Personal 
designators are haecceities of persons, and if ip is a proposition 
then ( i p )  is a haecceity of ip ,  but neither of these kinds of 
haecceities is a definite description. 

Now let us return to the problem of transworld identity. There 
are just two kinds of theories that make transworld identity a 
function of what assertions are true at a world-essentialism 
and nonessentialism. By 'essentialism' I mean the following: 

Essentialism: x exemplifies a at w iff ( 3 8 ) [ 8  is a haecceity 
of x and ( a : 8 )  is true at w]; and a designator 8* designates 

A singular assertion need not itself contain a haecceity. For example, if 
la, is a haecceity of x then (3y ) [ (p :y )  & (a:y) ]  is a singular assertion about 
x .  It is equivalent to but not identical with @ : l a ) .  
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x at w iff (38)[8 is a haecceity of x and (8* == 8) is true at 
wl . 
Before considering the merits of essentialism, let us con- 

sider nonessentialist theories of transworld identity. As we are 
only considering qualitative theories, we are still operating with 
the assumption that what determines whether a designator 8 
designates x at w is the set of assertions containing 8 that are 
true at w. According to nonessentialism, 8's designating x at 
w must at least sometimes result from a number of general 
assertions containing 8 being true at w. These are assertions 
that are in fact about x, but that could be about something 
else. These assertions ascribe various qualities to the desig- 
natum of 8, and it is by virtue of the designatum exemplifying 
those qualities that it is x .  By hypothesis, these qualities can- 
not be essences of x .  Some of them may be necessary qualities 
of x (e.g., 'is not a number'), but most of them will be the 
contingent qualities we normally employ in talking and think- 
ing about objects. A nonessentialist qualitative theory must 
claim that the fact that an object x in a world w and an object 
y in another world w* exemplify certain sets of qualities is 
sufficient to guarantee that they are one and the same object. 
Various theories of this sort might be proposed. For example, 
it might be claimed that an object in one world is to be iden- 
tified with that object in another world with which it is most 
~ i m i l a r . ~  For the present discussion, however, we need not 
settle upon any particular nonessentialist theory. 

It will now be argued that no nonessentialist theory of trans- 
world identity can be correct. Consider a possible world w 
consisting of just two billiard balls a and p, identical except 
for color. a is red and 3 is blue. It seems clear that it is pos- 
sible for the roles of a and 3 to be interchanged, with a being 
blue instead of red and 3 being red instead of blue, but every- 
thing else ~nchanged .~  Assuming that world books satisfy our 

There are a number of familiar difficulties for this simple theory. For 
example, it makes identity nontransitive. See also the discussion in Chisholm 
[1976]. 

One theory that I will not explicitly discuss is Lewis's "counterpart 
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second desideratum for possible worlds, this means that there 
is a possible world w* that is just like w except that a is blue 
and is red. There is no qualitative difference between the 
configuration of billiard balls in w and w*. It follows that the 
set of general (i.e., nonsingular) assertions true at w is the 
same as the set true at w*. But the designator expressed by 
'the red billiard ball' designates different balls at the different 
worlds. Accordingly, the identity of the object designated by 
this designator cannot be determined by the set of general as- 
sertions involving it that are true at a world. No nonessentialist 
qualitative theory of transworld identity can differentiate be- 
tween these two worlds. Thus, all such theories must be false.' 

The only way to avoid the preceding difficulty and salvage 
the construal of possible worlds as world books is to embrace 
an essentialist theory of transworld identity. The two config- 
urations of billiard balls are qualitatively the same, so in order 
for there to be assertions true of the one configuration but false 
of the other, those assertions cannot simply describe the gen- 
eral qualitative structure of the two configurations. The dif- 
ference between the two configurations lies exclusively in the 
identity of the billiard balls of different colors, so if there are 
to be assertions true of the one configuration and false of the 
other, they must be singular assertions. Therefore, the world- 
book construal of possible worlds can satisfy the second de- 
sideratum only if there are haecceities for our billiard balls. 

Of the designators mentioned so far in this book, only per- 
sonal designators, temporal designators, and logical designa- 
tors are regularly haecceities, and none of these can be haecce- 
ities of billiard balls. Is there any reason at all to think that 
billiard balls have haecceities? It is noteworthy that the afore- 
mentioned haecceities are all propositional designators. It may 
seem that if we look instead to statemental designators, it is 

theory" (see Lewis [1968]). The reader interested in counterpart theory may 
notice, however, that the present example is a counterexample to counterpart 
theory. Counterpart theory implies that it is not possible for the roles of a 
and 0 to be interchanged. 
' This is a familiar form of argument. See Max Black [I9521 and R. M. 

Adams [1979]. 
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quite easy to find haecceities. We have talked about directly 
referential statements, and we can analogously construct di- 
rectly referential statemental designators. According to the de- 
notation theory, these are the senses of proper names. A di- 
rectly referential statemental designator can be characterized 
in terms of its diagram: 

(2.8) 9 is a directly referential statemental designator for x 
iff for any assignment of values to the dynamic pa- 
rameters, the possible sent and acceptable received 
designators for Q are all propositional designators des- 
ignating x.  

Somewhat surprisingly, directly referential statemental des- 
ignators are not haecceities. A statemental designator desig- 
nates an object iff its sent and received designators do. Thus, 
a statemental designator can designate an object x at every 
possible world at which x exists only if at every such possible 
world there is some propositional designator designating x.  
That is precisely which what is in doubt in the world with the 
red and blue billiard balls. It appears that without proposi- 
tional haecceities, there will not be statemental haecceities for 
the billiard balls either. Thus, an essentialist theory of trans- 
world identity must proceed in terms of propositional haecce- 
ities. 

It appears that if billiard balls have haecceities, they must 
be derived from essences; so do billiard balls have essences? 
It seems extraordinarily unlikely that any normal descriptive 
qualities can be essences of our billiard balls. However, Plan- 
tinga [I9741 has made the ingenious suggestion that there are 
essences constructed out of "world-indexed qualities". The 
idea is that for each quality 'y that an object x exemplifies at 
a world w, there is also the quality of exemplifying y at w, 
which x exemplifies necessarily. The latter is a world-indexed 
quality. Thus, if we choose a quality 'y that x alone exemplifies 
at w, exemplifying y at w is an essence of x.  

By employing world-indexed qualities, can we generate a 
haecceity of our billiard ball that will enable us to identify 
it in w? In order to do so, we must find a world w* and a 
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property 'y that only (3 exemplifies at w*.  Then the proposal 
is that exemplifying y at w* is a haecceity of @. Unfortunately, 
there is a difficulty for this proposal. The quality we are call- 
ing 'the quality of exemplifying y a t  w*' must have the form 

where o is some designator designating the world w*. The 
difficulty is now in justifying the assumption that there is such 
a designator as o. Notice that in order for (2.9) to be an es- 
sential quality of (3, w must designate w* necessarily, i.e., to 

must be a haecceity for w*.  Otherwise, it would be possible 
for fa> to designate some other world at which (3 does not ex- 
emplify 'y, and hence @ would not exemplify (2.9) necessarily. 
Thus, we have "reduced" the problem of finding haecceities 
for physical objects to the problem of finding haecceities for 
world books. But the latter problem is, if anything, more in- 
tractable than the former. I think it must be concluded that the 
appeal to world-indexed qualities will not provide us with 
haecceities. 

Plantinga has often talked about another kind of essence. 
For example, he talks about the property of being Socrates. 
This is supposed to be what is expressed by the predicate ^x 
= Socratesl. His remarks suggest that he takes this property 
to be directly referential. It involves Socrates "directly" rather 
than via some representation. I do not want to deny that there 
is such a property, but I do insist that it is neither a concept 
nor an attribute. Once we have a workable notion of a possible 
world, we will be able to define a broad notion of a property 
that includes properties like that of being Socrates. But such 
properties cannot be used in constructing world books, be- 
cause they are not constituents of either propositions or state- 
ments. I will grant that these properties are constituents of 
proposition-like objects-what we might call 'truths' (and what 
Plantinga calls 'propositions'). But these are neither fine-grained 
objects of belief nor products of assertion.' 

It might be suggested that possible worlds be taken to be maximal con- 
sistent sets of "truths". That is, in effect, just the proposal explored in sec- 
tion three. 
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My conclusion is that the search for haecceities is in vain. 
Most objects do not have haecceities. It follows that there is 
no way for the world-book construal of possible worlds to sat- 
isfy the second desideratum for possible worlds. We cannot 
paraphrase attributions of de re necessity in terms of world 
books. A more sophisticated conception of possible worlds is 
required for that purpose. 

3. Possible Worlds as Maximal States of Affairs 

The world-book construal of possible worlds fails because 
there is no way to identify objects across worlds in terms of 
the qualities they have at worlds. If possible worlds are to 
satisfy our second desideratum, it must make sense to talk 
about an object x in the actual world exemplifying a quality 
in another world. As we have seen, this cannot make sense if 
we insist that objects be described in each world qualitatively. 
The alternative is to make the identity of the object part of the 
specification of the world. This is the "stipulative account" 
of transworld identity proposed by Kripke [1972]. What it 
amounts to is the identification of possible worlds with max- 
imal possible states of affairs. 

The simplest states of affairs consist of objects exemplifying 
qualitites or assertions being true, such as Nixon's being pres- 
ident, there being little green men on the moon, 5+7 being 
12, and my not existing. We normally express states of affairs 
in English by employing gerund clauses. Where a is a quality, 
let [xla] be x's being a. More generally, if a is an n-place 
quality, let [xi ,..., x d a ]  be xi ,..., xn being a. Similarly, if ip is 
an assertion, let [@lip] be 9 ' s  being true.9 We talk about states 
of affairs obtaining or not obtaining (Nixon's being president 
obtains iff Nixon is president). States of affairs can exist with- 
out obtaining. For example, there is such a state of affairs as 
my not existing even though I do exist. 

In many ways, states of affairs resemble propositions. In 

The motivation for this notation is that we can think of assertions as 
zero-place qualities and the empty set as a zero-tuple. 
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particular, they are truth bearers of a sort. States of affairs are 
not literally true or false, but obtaining and not obtaining are 
truth-like properties. There is at least one respect, however, 
in which states of affairs differ importantly from propositions. 
States of affairs are directly referential in a strong sense in 
which propositions are n o t .  For example, if Mary is the girl 
in the red hat, then (on at least one construal of the definite 
description) the girl in the red hat's looking lost is the same 
state of affairs as Mary's looking lost.^ States of affairs may 
involve objects directly rather than under a description. 
Precisely: 

(3.1)If xl = y, and ... and x. = yn then [xi ,..., xn1a] = 

[ . y i , . . . ~ ~ n I ~ I .  

It is this directly referential character that makes states of af- 
fairs suitable for the construction of possible worlds satisfying 
our second desideratum. 

States of affairs are very much like directly referential prop- 
ositions." They are "about" objects but not in terms of some 
mode of representation. States of affairs, in some sense, con- 
tain objects as direct constituents. Whether we distinguish be- 
tween directly referential propositions and states of affairs seems 
to me mainly a matter of convenience. The term 'directly re- 
ferential proposition' is a philosophical term of art, and I doubt 
that there is any basis for saying that directly referential prop- 
ositions objectively are or are not states of affairs. 

It is generally (though not universally) acknowledged that 
distinct propositions can be logically equivalent. The question 
arises whether this is also true of states of affairs; i.e., can 
two distinct states of affairs be necessarily such that one ob- 
tains iff the other does? I do not see any basis in intuition for 

lo Recall that I argued in Chapter Two that propositions, as fine-grained 
objects of belief, are not directly referential. 

' This point is slightly obscured by the fact that '"the p's being a' is 
ambiguous. It can denote either [ipla] or [0l(a:ip)]. I am taking it in the 
former way here. 

l2 Recall that directly referential propositions are not really propositions 
in my sense. 
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deciding this matter, so I am going to follow the simpler course 
and suppose that logically equivalent states of affairs are iden- 
tical. In other words, I shall assume: 

(3.2) If S and S* are states of affairs, S = S* iff S and S* 
are necessarily such that one obtains iff the other does. 

This is a safe assumption even if there is another sense of 
'state of affairs' in which equivalent states of affairs need not 
be identical, because we can always regard states of affairs in 
the present sense as being equivalence classes of the more finely 
individuated kind of states of affairs. 

Contrary to what I have just maintained, there is a familiar 
argument, used by Donald Davidson [I9701 and attributed by 
him to Frege, which purports to show that (3.2) is not a safe 
assumption. The argument appears at first to show that if we 
assume both (3.1) and (3.2), it follows that there are only two 
states of affairs-one that obtains and one that does not. The 
argument goes as follows. Let S and S* be any two states of 
affairs that either both obtain or both fail to obtain. Neces- 
sarily, S obtains iff {O} = {x x = 0 & S obtains}, so S is 
equivalent to 

[{O},{xI x = 0 & S obtains} 1 y = z ] .  

Similarly, S* is equivalent to 

[{O},{x\ x = 0 & S* obtains} 1 y = z ] .  

But as S and S* either both obtain or both fail to obtain, 

{x x = 0 & S obtains} = {I 

Hence by (3. I), 

[{O},{x\ x = 0 & S obtains} 
obtains} 1 y = z ] .  

x = 0 & S* obtains}. 

y = z ]  = [{O},{X x = 0 & s* 

But then by (3.2), S = S*. Fortunately, this argument is fal- 
lacious, turning upon a scope ambiguity in the definite de- 
scription " [{O},{xI x = 0 & S obtains} 1 y == z]  l. The sentence 

Necessarily, S obtains iff [{0},{xl x = 0 & S obtains} 1 y == z ]  
obtains 
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is ambiguous between 

0(3Y)[(Vx)(xâ‚ <->Â (x = 0 & S obtains)) & (S obtains iff 
[{O},Y~ y = z ]  obtains)] 

and 

(^Y)[(\/x)(xâ‚ <-Ã (x = 0 & S obtains)) & U(S obtains iff 
, Y  y = z ]  obtains)]. 

The former is true and the latter false, but it is the latter that 
is required in order for us to infer from (3.2) that: 

S = [{0},{x x = 0 & S obtains} 1 y = z ] .  

This is because states of affairs are directly referential with 
respect to the objects listed left of the vertical bar. Thus, what 
it means for [{O},{x x = 0 & S obtains} 1 y = z ]  to obtain is 
that the object that is actually {XI x = 0 & S obtains} is such 
that it is {O}. If S obtains, the object that is actually {x x = 0 
& S obtains} is {O}, in which case [{O},{x/ x = 0 & S obtains} 
1 y as z ]  is [{0},{0}1 y = z ]  and obtains necessarily. Similarly, 
if S fails to obtain, then the object that is actually {XI x = 0 
& S obtains} is 0 ,  in which case [{O},{x x = 0 & S obtains} 
1 y = z ]  is [{0},01 y = z ]  and is necessarily such that it fails 
to obtain. In neither case is [{O},{x x = 0 & S obtains} 1 
y = z ]  equivalent to S (unless S happens to be either necessary 
or inconsistent). Consequently, Davidson's argument fails to 
establish that S = S*. 

States of affairs can be combined in various ways to form 
more complex states of affairs. For example, from the states 
of affairs Mary's divorcing Charlie and Charlie's eloping with 
Ginger we can construct the composite state of affairs Mary, 
Charlie, and Ginger being such that the first divorced the sec- 
ond and the second eloped with the third. In this manner, given 
two states of affairs S and S*, there is another state of affairs 
S&S* that is such that, necessarily, it obtains iff both S and 
S* obtain. Given (3.11, it follows that S&S* is unique. We 
can define S&S* precisely as follows: 

(3.3) S&S* = its being the case that S and S* both obtain. 



111. Possible Worlds 

We can similarly define negation, disjunction, and condition- 
als for states of affairs: 

(3.4) -S = its being the case that S does not obtain. 

(3.5) SvS* = its being the case that either S or S* (or both) 
obtain. 

I will sometimes abbreviate ^'--ST as ^'ST. Obviously, it fol- 
lows from these definitions that states of affairs satisfy the 
axioms for the propositional calculus, or what comes to the 
same thing, states of affairs form a Boolean algebra under the 
operations & , - , and v. 

In introducing the notion of a proposition in Chapter Two, 
we encountered the distinction between transient and nontran- 
sient propositions. Transient propositions are true of a time 
and thus may be true at one time and false at another. Non- 
transient propositions are true or false simpliciter, and it is 
only the latter that I call 'propositions'. There is an analogous 
distinction between transient and nontransient states of affairs. 
Nixon's running for president is a state of affairs that obtains 
at some times and not at others. Nixon's running for president 
sometime or Nixon's running for president in 1970 are non- 
transient states of affairs that, if they obtain at one time, obtain 
at all times. Both kinds of states of affairs are reasonable items 
for investigation, but only nontransient states of affairs enter 
into the construction of possible worlds. Let us define: 

(3.7) S is a nontransient state of affairs iff 5 is a state of 
affairs that is necessarily such that if it obtains at one 
time then it obtains at all times.13 

Even most nontransient states of affairs are not the sorts of 
things philosophers have wanted to call 'possible. worlds'. A 

l 3  The distinction between nontransient and transient states of affairs is 
similar to the distinction in Chisholm [I9761 between propositions and other 
states of affairs. As Chisholm uses the term, a proposition is simply a non- 
transient state of affairs. It is unclear, however, whether all of our states of 
affairs are states of affairs in Chisholm's sense. His distinction may be the 
same as the distinction between transient and nontransient propositions. 
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possible world must be a "maximal" state of affairs-one 
that combines descriptions of everything. In order to make this 
precise, let us begin by observing that there is a containment 
relation between states of affairs that can be defined as follows: 

(3 .8 )  S C S* iff S and S* are necessarily such that if S* 
obtains then S obtains. 

Equivalently: 

(3.9) S C S* iff (S* + 5') is necessarily such that it is obtains. 

A state of affairs is possible iff it is possible for it to obtain, 
and it is necessary iff it is necessarily such that it obtains. 
Then the conception of possible worlds as maximal states of 
affairs is made precise as: 

(3.10) w is a possible world iff w is a nontransient possible 
state of affairs and for any nontransient state of af- 
fairs S, if it is possible that w and S both obtain then 
S c w.14 

A possible world is actual iff it obtains. 
Where w is a possible world, we can define: 

(3.11) An assertion ip is true at w iff ip and w are necessarily 
such that if w obtained then ip would be true, i.e., 
S c w. 

l4 This notion of a possible world is in the general tradition of Wittgenstein 
[1921], C. I. Lewis [1946], and Camap [1947]. I may have been the first 
to construct this notion of a possible world, in Pollock [1967], and Plantinga 
[I9741 endorsed this notion and made it popular. As far as I know, the re- 
striction to nontransient states of affairs has been previously overlooked by 
everyone. 

There is an alternative conception of possible worlds according to which 
there is something called 'the world', and possible worlds are ways the world 
could have been. I have difficulty with the notion that there is such a thing 
as "the world' that exists necessarily but can have different properties. But 
if it is granted that this makes sense then it seems to come to the same thing 
as the conception of possible worlds as maximal possible states of affairs. 
Possible worlds will not literally be maximal possible states of affairs, but 
presumably to describe a way the world could have been is just to say what 
states of affairs would have obtained had the world been that way. 
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(3.12) An object x exempl@es a quality ci at w iff 
[x la]  c w. 

(3.13) A state of affairs S obtains at w iff S C w. 

We have defined possible worlds to be maximal possible 
states of affairs, but how do we know that there are any? Our 
definition is a bit like observing that there are larger and larger 
numbers and then defining infinity to be the largest number. 
That does not work because there is no largest number. How 
do we know that there are not just more and more compre- 
hensive states of affain without there being any maximal states 
of affairs? This is a question that has rarely even been raised, 
but it cannot be ignored. As far as I can see, the only way to 
defend the existence of possible worlds is by acknowledging 
the existence of infinite conjunctions of states of affairs. Al- 
though this sounds like a suspiciously strong assumption, I 
think it is defensible. Given a set X of states of affairs, X's 
being such that every state of affairs in it obtains is a perfectly 
good state of affairs. Let AX be this state of affairs. AX can 
be thought of as the (possibly infinite) conjunction of the 
members of x.15 Given these conjunctions, we can prove the 
following: 

(3.14) Necessarily, if W is the set of all nontransient states 
of affairs that obtain then AW is a possible world 
that obtains. 

Proo) Suppose W is the set of all states of affairs that 
obtain. Then AW obtains. Furthermore, for every state 
of affairs S,  either SEW or SEW, so either S C AW or 
$ C AW. Suppose it is possible that S and AW both obtain. 
Then S is not necessarily such that it fails to obtain when- 
ever AW obtains, i.e., it is false that C AW. But then 
S C AW. Therefore, AW is a possible world. 

On the reasonable assumption that, necessarily, there is a set 

l5 In terms of the Boolean algebra of states of affairs, AX is the infimum 
of x. 
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of all states of affairs that obtain, it follows that, necessarily, 
some possible world obtains. 

Thus far I have left it intentionally vague whether our con- 
struction of states of affairs and possible worlds should pro- 
ceed in terms of both concepts and attributes and both prop- 
ositions and statements. For what it is worth, that appears to 
accord with common usage. But I will now argue that it makes 
no difference whether we include statements and attributes in 
the construction. Had we instead begun with just concepts and 
propositions, we would have arrived at the same possible worlds 
and states of affairs. Consider a state of affairs of the form 
[@I+] where + is a statement. [@I+] obtains iff + is true. In 
turn, + is true iff all of its possible sent and acceptable re- 
ceived propositions relative to the present values of the dy- 
namic parameters are true. Dynamic parameters are properties 
of the world. l6 Thus, the values of the dynamic parameters at 
a world are fixed by the world itself. For any assignment IT 

of possible values to the dynamic parameters, let i? be the state 
of affairs consisting of those being the actual values of the 
dynamic parameters. IT is the assignment of values to the dy- 
namic parameters at a world w iff 7r C w. Let SR,,,(IT) be the 
set of all possible sent and acceptable received propositions 
for + relative to n. Then if IT is the actual assignment of values 
to the dynamic parameters, + is true iff every member of SR,,,(IT) 
is true. If X is any set of propositions, let AX be the state of 
affairs consisting of all of the members of X being true." Then 
+ is true (at the actual world) iff AsR,,,(IT) obtains. Next, 
let DP be the set of all possible assignments of values to 
the dynamic parameters, and consider all states of affairs 
of the form [i? + ASR+(IT)] for ITEDP. At any world 
w, all such conditional states of affairs whose antecedents 
represent values of the dynamic parameters not actual in that 
world will obtain vacuously, and the one whose antecedent 
represents the actual values at that world will obtain iff + 

l6 In this they are to be contrasted with pragmatic parameters, which are 
properties of utterances. 

I' That is, A{[01+]1 +EX}. 
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is true at that world. Thus, necessarily, [@I+] obtains iff 
/I{[+ + ASR$(T)]  1 T E D P }  obtains. But then by (3.2): 

The right side of (3.15) is a state of affairs constructed entirely 
out of concepts, objects, and propositions. Thus, our construc- 
tion of states of affairs will include [@I+] even if we begin 
with just concepts and propositions and without including 
statements and attributes. 

In the same way we can show that where a is an attribute, 
the state of affairs [xl , . . . ,xnla] can be constructed without ap- 
pealing to statements or attributes. Letting S R a ( ~ )  be the set 
of all possible sent and acceptable received concepts for a 
relative to T ,  we have: 

Consequently, it makes no difference to the states of affairs 
and possible worlds we arrive at whether we build them out 
of just concepts and propositions or include statements and 
attributes in the construction. In either case, we will be able 
to talk about the truth of statements at possible worlds. 

Where a is a concept or cp is a proposition, let us call non- 
transient states of affairs of the form [x l , .  . . ,xnla] or [DIcp] el- 
ementary states of affairs.18 Not all nontransient states of af- 
fairs are elementary. Consider, for example, possible worlds. 
Possible worlds contain infinitely many elementary states of 
affairs. There is no way to combine all of those into a single 
state of affairs consisting of a finite sequence of objects ex- 
emplifying a quality. Thus, a possible world is not elemen- 
tary. A possible world will contain many elementary states of 
affairs, but it will also contain many nonelementary states of 

'' To avoid trivializing the notion of an elementary state of affairs, we 
must restrict what kinds of objects x , ,  ..., xn can be. Otherwise, every state 
of affairs would be elementary, because S is the same state of affairs as S's 
obtaining. We must require that x , ,  . . . ,xn be, in some sense, "basic" objects. 
These are, roughly, concrete objects (constmed so as to include shadows, 
rainbows, etc.). 
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affairs. It is reasonable to assume, however, that a possible 
world can be characterized by the set of elementary states of 
affairs contained in it. Thus, I will assume: 

(3.17) If w and w* are possible worlds, w = w* iff w and 
w* contain the same elementary states of affairs. 

Corresponding to each state of affairs S is its extension I I S ~ \ ,  
which is the set of all possible worlds at which S obtains. The 
question arises whether every set of possible worlds is the ex- 
tension of some state of affairs. That it is can be argued as 
follows. If X is a set of possible worlds, let S be the state of 
affairs there being some member of X that obtains, i.e., the 
disjunction VX of all members of X. l9 Then IIsI\ = X. For many 
purposes we could identify states of affairs with their exten- 
sions, taking states of affairs to be arbitrary sets of possible 
worlds. 20 

I believe that the conception of possible worlds as maximal 
states of affairs is adequate for three of our four desiderata for 
possible worlds. The process of establishing this becomes quite 
involved and will occupy the rest of the chapter. It will follow 
from section six that no conception of possible worlds can 
satisfy the third desideratum. 

4. Necessity and Possible Worlds 

The two principal desiderata for any concept of a possible 
world are: 

(4.1) If q is a proposition, 9 is necessarily true iff 9 is true 
at all possible worlds. 

(4.2) If a is a concept, an object x is necessarily such that 
it exemplifies a iff x exemplifies a at every possible 
world. 

It is quite easy to establish that the conception of possible 

l 9  VX is just -A{-Sl SEX}. 
20 But not for all purposes. We cannot identify a possible world with its 

extension. That would be to have the possible world a member of itself. 
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worlds as maximal possible states of affairs satisfies both of 
these de~iderata.~'  The simplest way of establishing (4.1) and 
(4.2) is by appealing to a well-known theorem regarding Boo- 
lean algebras, but before we can do that we must prepare the 
ground a bit. 

Thus far we have only talked about propositions and state- 
ments being necessary, but we can extend the notion of ne- 
cessity to states of affairs in the obvious way: 

(4.3) A state of affairs S is necessary iff S is necessarily 
such that it obtains. 

Because logically equivalent states of affairs are identical, there 
is just one necessary state of affairs. Definition (4.3) has the 
immediate consequence that: 

(4.4) A proposition q is necessary iff [@Iy] is necessary; q 
is possible iff [0lq] is possible. 

We defined entailment between propositions as follows: 

If q and 0 are propositions, y entails 0 iff, necessarily, if 
q is true then 0 is true. 

We can define entailment between states of affairs analogously: 

(4.5) If S and S* are states of affairs, S entails S* iff, nec- 
essarily, if S obtains then S* obtains. 

Equivalently, S entails S* iff S* C S .  
It was remarked in section three that states of affairs form 

a Boolean algebra with 'C' as the Boolean 'less than' relation. 
Because equivalent states of affairs are identical, there is just 
one necessary state of affairs, which in Boolean terminology 
will be called ' l ' ,  and there is one inconsistent state of affairs, 
called '0'. It follows from (4.3) and the identity of equivalent 
states of affairs that for any state of affairs S:  

'' In Pollock [I9841 I maintained that this was difficult to show and re- 
quired the use of a substantial amount of modal logic. A1 Plantinga disabused 
me of that opinion and suggested an argument basically similar to the one I 
am giving here. 
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(4.6) S is necessary iff S = 1 ;  

(4.7) S is possible iff S # 0 .  

In our Boolean algebra of states of affairs, a proper ultra- 
filter is a maximal consistent set of states of affairs closed un- 
der conjunction and entailment: 

(4.8) F is a proper ultrafilter iff F is a set of states of affairs 
such that: 
(a) AF # 0;  
(b) if S,S*â‚ then (S&S*)EF; 
(c) if SEF and S* C S then S*EF; 
(d) for every state of affairs S ,  either SEF or SEF. 

Equivalently, a proper ultrafilter is the set of all states of af- 
fairs obtaining at some possible world. Thus: 

(4.9) If F is a proper ultrafilter then AF is a possible world. 

The following is a well-known theorem regarding Boolean 
algebras: 

(4.10) Every nonzero element of a Boolean algebra is a 
member of some proper ~ l t r a f i l t e r . ~ ~  

From (4.7) and (4.10) we can conclude that if S is possible 
then S is a member of some proper ultrafilter F. If SEF then 
S C AF. By (4.9), AF is a possible world. By definition, S 
obtains at a possible world iff S is contained in that possible 
world, so: 

(4.11) If S is possible then S obtains at some possible world. 

Conversely, possible worlds are possibly such that they ob- 
tain, so if S obtains at a possible world then S is possible. 
Consequently: 

(4.12) For any state of affairs S ,  S is possible iff S obtains 
at some possible world. 

Equivalently: 

22 See, for example, corollary (3.6) of Bell & Slomson [1969], 16. 
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(4.13) For any state of affairs S,  S is necessary iff S obtains 
at every possible world. 

Thus, from (4.4) we obtain (4.1): 

For any proposition (p, (p is necessary iff (p is true at every 
possible world. 

This is the first of our two desiderata. The second desideratum 
follows by observing that, necessarily, x exemplifies a iff [xi4 
obtains, and hence x is necessarily such that it exemplifies a 
iff [xla] is necessary. Consequently, we also have (4.2): 

x is necessarily such that it exemplifies a concept a iff x 
exemplifies a at every possible world. 

It is often claimed that the appeal to possible worlds pro- 
vides us with an analysis of the concept of necessary truth. 
But we have had to use the concepts of necessity and possi- 
bility in defining the notion of a possible world-a possible 
world is a maximal possible nontransient state of affairs. We 
cannot, without circularity, define possible worlds in this way 
and then define necessity and possibility in terms of possible 
worlds. For this reason David Lewis [I9731 takes possible 
worlds to be primitive and defines necessity (and a number of 
other philosophical concepts) in terms of them. Lewis's ar- 
gument for this procedure is twofold: (1) We all believe that 
there are many ways things could have been besides the way 
they are. On the face of it, 'ways things could have been' are 
possible worlds, so barring a good argument to the contrary, 
it seems that we all understand the notion of a possible world 
and believe that there are such things. Thus, it is philosoph- 
ically acceptable to take the concept of a possible world as 
primitive and analyze other concepts in terms of it. (2) We 
must take possible worlds as primitive in order to get a rea- 
sonable theory of necessity. Necessity can be defined in terms 
of possible worlds and in no other way. Any attempt to con- 
struct possible worlds must employ the notion of necessity, in 
which case possible worlds can no longer be used to explain 
necessity. 
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The best response to Lewis' argument is to observe that it 
can be turned on its head. It can be claimed with considerable 
justification that (1) we all understand the notion of necessity 
and (2) we must take necessity as basic in order to get a rea- 
sonable theory of possible worlds. In connection with the sec- 
ond point, observe that Lewis' first claim seems to be false. 
We do all believe that there are many ways things could have 
been besides the way they are, but among ways things could 
have been are such things as my having arisen an hour later 
this morning. In other words, ways things could have been 
are states of affairs and not just possible worlds. Lewis is right 
that we all have the concept of a state of affairs, but this is 
not sufficient to support his position. We must still say which 
states of affairs are possible worlds-namely, those that are 
maximal, nontransient, and possibk-and to do that we need 
the notion of possibility (or necessity). Thus, even taking states 
of affairs as primitive (which we have done), we cannot give 
a noncircular account of necessity in terms of possible worlds, 

Furthermore, I think it is a mistake to suppose that no rea- 
sonable theory of necessity can be propounded except in terms 
of possible worlds. In my opinion, the most promising ap- 
proach is epistemological. In Pollock [1974], I proposed an 
analysis of a priori truth in epistemological terms.23 Although 
I will not pursue the details here, it is plausible to suppose 
that necessary truths are those generated from a priori truths 
by certain closure conditions. 

Having established that necessary truth for propositions co- 
incides with truth at all possible worlds, the framework of pos- 
sible worlds can be used to justify the choice of S5 as our 
modal logic .24 For non-quantificational S5, the only principle 
that is normally considered problematic is the "characteristic 
axiom of S5": Oq Ã‘ 009. We might try to defend it as 
follows: 

(1) Suppose 09 is true. 

23 Chapter Ten. 
24 Several authors have given arguments of this sort. See, for example, 

Plantinga [1974], 51-54. 
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(2) Then (p is possible. 
(3) So (p is true at some possible world w. 
(4) If (p is true at w, then (p comprises part of the makeup 

of w and hence (p is necessarily such that it is true at w. 
(5) Hence (p is necessarily such that there exists a possible 

world at which (p is true. 
(6) So (p is necessarily such that it is possible. 
(7) Therefore, UO(p is true. 

There is an assumption concealed in this argument. It is gen- 
erally assumed that possible worlds have necessary existence. 
This assumption is not shared universally, however. Plantinga 
calls its denial "existentialism", and it is the topic of section 
eight. Suppose existentialism is true and possible worlds do 
not have necessary existence. Line (4) of the argument might 
then be deemed problematic, but even if we grant that (4) is 
true, (5) will not follow from (4). If possible worlds do not 
have necessary existence, then from the fact that (p is neces- 
sarily such that it is true at w, it does not follow that (p is 
necessarily such that there exists a possible world at which it 
is true. 

In light of these considerations, it behooves us to be more 
careful. Let us begin by making explicit the assumption that 
possible worlds have necessary existence, that they are nec- 
essarily such that they are possible worlds, and that if a prop- 
osition (p is true at a possible world w then (p is part of the 
makeup of w and hence (p and w are necessarily such that (p 

is true at w. Symbolizing ^x exists1 as ^E(x)l, ̂ w is a possible 
world1 as ^W(w)l, and "(p is true at w1 as 'TW(p1, the as- 
sumption is: 

S5 can be axiomatized as follows: 

(4.15) Axioms and rules for S5: 
(Al) If p is truth-functionally valid then Dp is an 

axiom; 
('42) UP -Ã p; 
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Modus ponens is truth preserving, so if we can show that 
any proposition having the form of one of the axioms (A1)- 
(A6) is true, it will follow that any proposition having the 
form of a theorem of S5 is true. Let us consider the axiom 
schemes one at a time: 

(Al) is trivial. Obviously, if a proposition tp is truth-func- 
tionally valid, it is true at every possible world, and so Dtp is 
true. 

If a proposition (D is true at every possible world, then it is 
true at the actual world. Thus (Dtp -+ tp) is true. This justifies 
(A2). 

The justification of (A3) results from observing that in the 
justification of (A2) it makes no difference which world is the 
actual world. Consequently, (Dtp -+ tp) is true at every pos- 
sible world; i.e., D(Dtp -+ <p) is true. 

The justification of (A4) is analogous to that of (A3). If 
(tp -+ 0) is true at every possible world and tp is true at every 
possible world, then 0 is true at every possible world; i.e., 
[D(q + 0) -Ã (Dtp -+ DO)] is true. In establishing this, it 
makes no difference which world is the actual world, so it is 
true at every possible world; i.e., D[D(<p -+ 0) -+ (Dtp -+ 

DO)] is true. 
The arguments in defense of (A5) and (A6) are somewhat 

25 This is a somewhat unusual axiomatization of S5. It is more common 
to see an axiomatization that does not contain (A3) or (A6), that does contain 
axioms like (A4) and (A5) but without the initial necessity operator, and that 
includes an additional rule of inference of necessitation: if I- p then t Dp. 
This can be found, for example, in Hughes and Creswell [1968]. The reason 
I prefer the present axiomatization is that although the rule of necessitation 
may be "validity preserving", it is not truth preserving. It is more difficult 
to construct certain kinds of arguments if the rules are not truth preserving. 
By contrast, the only rule of inference in (4.15) is modus ponens, which is 
truth preserving. Necessitation becomes a derived rule for the logic axiom- 
atized in (4.15). 
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more involved. We must begin by establishing three first- 
order modal principles: 

(4.16) If O(3x)Fx and lJ(Vx)(Fx + Gx) then O(3x)Gx. 

Proof: If O(3x)Fx and D(Vx)(Fx + Gx) then there is a 
possible world at which something is F ,  and at every pos- 
sible world all F's  are G's, so there is a possible world at 
which something is G ,  i.e., O(3x)Gx. 

(4.17) If (3x)[a.Â£(x and UJx] then D(3x)Fx. 

Proof: Suppose there is some object x that has necessary 
existence and is necessarily such that it is F. Then x exists 
at every possible world and x is F at every possible world. 
But then at each possible world there exists an object (namely, 
x) that is F at that world. 

(4.18) If 0(3x)[\Z\,E(x) and DxFxl then (3x)Fx. 

Proof: Suppose 0 ( 3 x ) [ Q E ( x )  and UxFx] .  Then there is 
a possible world at which r(3x)[lJxE(x) and a F x I 1  is true. 
By (4.17), rCl(3x)Fx1 is true at that world, i.e., ^(3x)Fx1 
is true at every possible world. But then ^(3x)Fx1 is true 
at the actual world. 

With the help of (4.14) and (4.17) we can establish (A5): 

(4.19) For any proposition ip, D [ O q  + DOip] is true. 

Proof: 
(1) Suppose 0ip is true. 
(2) Then (3w)[W(w) and Twip]. 
(3) Then by (4.141, (3w){D&(w) and CL,JW(w) and Twtpl}. 
(4) By (4.17), ( 3 )  implies that lJ(3w)[W(w) and T^}, i.e., 
(5) 0 0 9  is true.It follows that (Oip + DOip) is true. In 

establishing this, it makes no difference which world is 
the actual world, so this proposition is true at every pos- 
sible world, i.e., D [ O q  -* DOip] is true. 

We use (4.14), (4.16), and (4.18) to establish (A6): 

(4.20) For any proposition ip, (Dip + UUip) is true. 
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Proof: 
(1) Suppose Dip is true. 
(2) Then (Vw)[if W(w) then Twcp]. 
(3) Then by (4.14), (Vw)[if W(w) then Uw,,+Twipl. 
(4) Suppose DDip is false. 
( 5 )  Then -Q(Vw)[if W(w) then Twip]. 
(6) So O(yw)[W(w) and -Twip], i.e., 
(7) 0(3w)[W(w) and Tw-ip] . 
(8) Thus by (4.14) and (4.16), 0(3w){\3^E(w) and 

Dw,JW(w) and Tw-ipl}. 
(9) Thus by (4.18), (3w)[W(w) and Tw-ip], i.e., 

(10) (3w)[W(w) and -Twip]. 
But (10) contradicts (3), so supposition (4) is incompatible 
with supposition (1). 

It follows that every proposition having the form of any 
theorem of S5 is true. It must be emphasized, however, that 
in establishing this we have assumed (4.14) according to which 
(1) possible worlds have necessary existence and are neces- 
sarily such that they are possible worlds, and (2) if a propo- 
sition is true at a possible world then the proposition and world 
are necessarily such that the proposition is true at that world. 
In section eight, we will explore the possibility of relaxing 
this assumption. Until section eight, I will continue to assume 
(4.14) but will not generally note it explicitly. 

Thus far we have confined our attention to propositions. Let 
us turn to statements and consider what connection there is 
between the necessary truth of a statement and its being true 
at all possible worlds. In the case of statements, we have two 
kinds of necessity: internal necessity and external necessity. 
A statement is externally necessary iff it is necessarily such 
that it is true. A statement is internally necessary iff it is nec- 
essarily such that its possible sent and acceptable received 
propositions are all necessary. Corresponding to each state- 
ment $ is the state of affairs [0]+], and $ is externally nec- 
essary iff [0\̂ ] is necessary. Thus, an immediate consequence 
of (4.13) is: 
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(4.21) For any statement 4, 4 is externally necessary iff il; 
is true at every possible world. 

Thus, we obtain one expected connection between necessity 
for statements and possible worlds. Notice that this can be 
used to justify some of the claims of Kripke [I9721 and Put- 
nam [1975]. They maintained that if it is true that water is 
H-f l ,  then there is no possible world at which water is not 
H f > .  I argued in Chapter Two that statements formulating 
physical necessities concerning nomic kinds (such as the state- 
ment that water is H@) are externally necessary. It now fol- 
lows that they are true at all possible worlds, and thus Kripke 
and Putnam were right. It is interesting that the argument for 
this conclusion turns essentially on there being the distinction 
I have proposed between statements and propositions. 

Internal necessity is a stricter modality than external neces- 
sity. Internally necessary statements are also externally nec- 
essary, but we have seen examples of externally necessary 
statements that are not internally necessary. It follows that in- 
ternal necessity does not coincide with truth at all possible 
worlds. There are statements true at all possible worlds that 
are not internally necessary. This is of considerable impor- 
tance when we consider statemental modal logic-the logic 
of modal statements. It was established in Chapter Two that 
if tp is a statement then D t p  is true iff cp is internally necessary. 
Furthermore, it was argued that there can be no modal oper- 
ator S such that S i p  is true iff tp is externally necessary. It 
follows that the truth of D t p  does not correspond to tp being 
true at all possible worlds. In other words, there is no way to 
base a statemental modal logic directly on possible worlds. 
This is a rather startling conclusion, so let us consider it more 
carefully. If it were to be possible to base statemental modal 
logic directly on possible worlds, the modal operator involved 
would have to correspond to external necessity. The reason 
there can be no such modal operator EE is that it must be pos- 
sible to describe a statement in terms of its diagram, but there 
is no apparent way to construct a diagram for S t p  that would 
have the result that S t p  is true iff tp is externally necessary. 
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As we have seen, the only obvious way to construct a diagram 
for a modal statement makes the modal operator correspond 
to internal necessity instead. 

Despite the fact that there is no direct connection between 
statemental modal operators and possible worlds, we can eas- 
ily show that statemental modal operators satisfy S5.  This fol- 
lows from the fact that propositional modal operators satisfy 
S5.  For example, consider statements of the form D[0+ 
DO+]. A statement is true iff its possible sent and acceptable 
received propositions relative to the actual values of the dy- 
namic parameters are all true. The possible sent and accept- 
able received propositions for a statement of the form D[0+ 
+ DON are propositions of the form D[Oq + DOq]. We 
have already established that all such propositions are true, so 
it follows that all statements of the form D[O+ + DO+] are 
true. Analogously, any statement having the form of an axiom 
of S5 is true, and consequently any statement having the form 
of a theorem of S5 is true. 

We generally think of logic as having to do with proposi- 
tions and statements, but it is worth noting that we can also 
define a modal operator for states of affairs and consider what 
logical properties it has. Because of the directly referential 
character of states of affairs, we can define modal operators 
for states of affairs much more simply than we can for either 
propositions or statements: 

(4.22) If S is a state of affairs, DS = 5's being necessarily 
such that it obtains. 

It follows from (4.13) that US obtains iff S obtains at every 
possible world. Furthermore, we can establish that the modal 
logic of states of affairs is at least S5 by using an argument 
precisely analogous to that used above to establish that prop- 
ositional modal operators satisfy S 5 .  

5 .  Properties 
The term 'property' is bandied about with great regularity 

in philosophical logic, but rarely with any careful explanation 

7 1 
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of what properties are supposed to be. We have already dis- 
cussed two kinds of property-like entities-concepts and at- 
tributes-but for some purposes a broader notion is required. 
For example, Plantinga is fond of talking about the property 
of being Socrates. R. M. Adams [I9791 calls such properties 
'thisnesses'. The thisness of Socrates is supposed to be a kind 
of directly referential property involving Socrates "directly7' 
rather than under a description or via some mode of 
representation. 

It is fashionable to treat properties as functions on possible 
worlds. In modal and intensional logic it is popularly alleged 
that a property P can be identified with that function that as- 
signs to each world w the extension of P at w. This function 
is defined precisely as follows: 

(5.1) If w is a possible world and P is a one-place property 
then Sp(w) = { X I  x has P at w}. 

P is then identified with Sp. n-place properties are treated 
analogously. It is generally added that every function from 
worlds to extensions is a property. Then properties can be de- 
fined as follows: 

(5.2) P is an n-place property iff P is a function from pos- 
sible worlds to sets of n-tuples of objects. 

Montague [1969] attributes the germ of this analysis to Camap 
in unpublished work and the final development of the idea to 
Kripke [ 19631. 

Although one frequently encounters something like (5 .2) ,  it 
is subject to a serious problem. Consider the property of being 
red. That is to be identified with the function R that assigns 
to each world w the set R(w)  of objects that are red at w. It 
is commonly believed that sets only exist insofar as their 
members exist, and an argument in support of this will be 
given in section seven. Consequently, the set R(w)  is the set 
of all objects from the actual world that are red at w. No other 
objects exist, so there exists no broader set of objects red at 
w. But now let w* be a different world containing different 
objects than those in the actual world. If w* were actual then 
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the set of objects that are red at w would be different than it 
is-it would be a set of objects existing at w*. Thus the func- 
tion R corresponding to the property of being red would be 
different than it actually is-it would have different values at 
different worlds and hence would be a different function. But 
the property of being red is the same property in w* as it is 
in the actual world, so it cannot be identified with the function 
defined by (5.1). 

Various contorted repairs might avoid this difficulty, but it 
seems to me that there is a better way to proceed. We have 
remarked that there are supposed to be directly referential 
properties, like that of being Socrates. In this respect, prop- 
erties are much like states of affairs. Roughly, properties are 
to states of affairs as concepts are to propositions and as at- 
tributes are to statements. This suggests taking properties to 
be functions from objects to states of affairs. On this proposal, 
a property P is identified with that function that assigns to 
each object x the state of affairs consisting of x's having the 
property P. For example, the property of being red is iden- 
tified with the function that assigns x's being red to each ob- 
ject x. More generally, an n-place property is taken to be a 
function from n-tuples of objects to states of affairs. 

A distinction must be made between functions-in-extension 
and functions-in-intension. Functions-in-extension are sets of 
ordered pairs. Functions-in-intension are intensional entities 
akin to concepts. More precisely, functions-in-intension can 
be taken to be "functional" concepts: 

(5.3) f is a function-in-intension iff f is a two-place concept 
that is necessarily such that for any x,y,z, if (x,y) and 
(x,z) both exemplify f then y = z .  

If (x,y) exemplifies f, we write '"f(x) = yl. 
Properties cannot be identified with functions-in-extension. 

A function-in-extension, being a set of ordered pairs, must 
have the same domain at every world at which it exists. But 
the function-in-extension that assigns to each object the state 
of affairs consisting of the object's having a certain property 
will have different domains in different worlds and hence will 
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be a different function. Therefore, at least as a first approxi- 
mation, properties must be identified with functions-in-inten- 
sion rather than with functions-in-extension. My initial pro- 
posal regarding properties is thus: 

(5.4) An n-place qualitative property is any function-in-in- 
tension from n-tuples of objects to states of affairs. 
An n-tuple u has the property P a t  a world w iff 
P(u) c w. 

Definition (5.4) defines 'qualitative property'. The reason for 
the qualification 'qualitative' is that in (5.4) we have still not 
managed to construct properties like that of being Socrates. 
Given a haecceity 8 of Socrates, we could construct such a 
function quite easily. It would be the binary concept expressed 
by ry =* [ X ~ C X ] ~  where cx is the monadic concept expressed by 
kx = 8 l .  But we have seen that there is reason to doubt the 
existence of haecceities for most objects, and without a haecceity 
of Socrates there is no way to construct a function-in-intension 
S that assigns to an object x the state of affairs x's being Soc- 
rates. This is connected with a general feature of functions in 
intension. If f(x,y) is a binary function-in-intension and b is 
an object, there is generally no such function-in-intension as 
the monadic function f(x,b). Without a haecceity of b, you 
cannot fill an argument place in a function-in-intension and 
still have a function-in-intension. This is an undesirable con- 
straint both on functions-in-intension and on properties. It is 
easily circumvented. Where k is a number, let us define a k- 
ary assignment of degree n to be a function-in-extension as- 
signing objects to k of the integers between 0 and n+ 1. We 
can regard a k-ary assignment of degree n as telling us how 
to fill k of the argument places in an n-ary function-in-inten- 
sion with objects. We can then define: 

(5.5) f is a generalized n-place function-in-intension iff either 
f is an n-place function-in-intension or for some m > 
n and some k there is an m-ary function-in-intension 
g and a k-ary assignment u of degree m such that n = 

m-k and f = (g,u). 
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For example, if g is a binary function-in-intension and u is 
the monadic assignment {(2,b)} and f = (gym), then f(x) = 

g(x,b). We can then define the general notion of a property 
as follows: 

(5.6) An n-place property is any generalized n-place func- 
tion-in-intension from n-tuples of objects to states of 
affairs. An n-tuple u has the property P at a world w 
iff P(u) C w. 

This definition will be refined further in section eight, but let 
us adopt it as it is for now. It follows that there is such a 
property as that of being Socrates, although it is not a qual- 
itative property. 

I can imagine it being protested that properties cannot lit- 
erally be functions. At best they "correspond" to functions, 
in much the same way natural numbers "correspond" to sets. 
I am not inclined to regard this objection as telling. Philoso- 
phers have so extended the use of the term 'property' that it 
can no longer be claimed to mean what the ordinary man means 
by it. Most nonphilosophers would view with amusement the 
claim that there is such a property as that of being Socrates. 
In philosophy, 'property' has become a term of art. As such, 
we can have properties be anything we want them to be that 
work in roughly the way properties are supposed to work in 
philosophy. My claim is that the best way to do that is by 
taking properties to be functions. 26 

As we have defined 'property', concepts and attributes are 
not properties. But there is a property corresponding to each 
concept or attribute. If a is a concept or attribute, then the 
corresponding property is the function-in-intension Pa that as- 
signs to an object x the state of affairs [xla]. More generally, 
if a is an n-place concept or attribute, and bl, .  . . ,bk are objects, 
then corresponding to the "partially filled" concept or attri- 
bute (a:b, , . . . ,bk,xH,, . . . ,xn) is the nonqualitative property (i.e., 
generalized function-in-intension) P(bl , . . . ,bk,xk+ . . ,x.). Note 

26 There remains a residual problem for the identification of properties 
with functions-in-intension when the latter are defined as in (5.4). This will 
be discussed in section eight. 
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that (a:b ,,..., bk,xk+ ,,..., xn) is not itself a concept or attribute. 
Concepts and attributes cannot have objects filling their ar- 
gument places. Their argument places must be filled by des- 
ignators. It thus becomes notationally convenient to simply 
identify (a:b,, . . . ,blÃ£xk ^,. . . ,xn) with (P:b,, . . . ,bk,x&i,. . . ,xn). 

We have defined what it is for an object to have a property. 
We can also define what it is for an object to have a property 
necessarily: 

(5.7) x has P necessarily iff x has P at every possible world. 

Properties that an object has necessarily are called essential 
properties of that object. We can then define an essence of an 
object to be a property that the object has at every possible 
world and that no other object has at any possible world. De- 
fining 'essence' in this way, the thisness of Socrates may or 
may not be an essence of Socrates, depending upon just what 
property we take this to be. It is most natural to take the this- 
ness of Socrates to be that function that assigns to each object 
x the state of affairs x's being (numerically) identical to Soc- 
rates. It is generally maintained, however, that 'Socrates = 
Socrates' is only true if Socrates exists. If we adopt that view 
of identity, then Socrates does not have the property of being 
Socrates at worlds in which he does not exist. It might be 
suggested that we should instead take the thisness of Socrates 
to be the property of being such that if it exists then it is iden- 
tical to Socrates. But this is a property that objects other than 
Socrates have at worlds at which they do not exist. To avoid 
these difficulties, I suggest that we take the thisness of Soc- 
rates to be the property of being possibly such that it is iden- 
tical with Socrates. It can be argued as follows that this is 
indeed an essence of Socrates. We have assumed (Chapter Two, 
principle (1.1 1)) that identities hold necessarily, i.e., that: 

Ua,,[a = s + a s ( E ( a )  -  ̂a = s)]. 

By S5 this is equivalent to 



5 .  Properties 

and hence to 

which implies 

Consequently, 

The latter tells us that nothing distinct from Socrates has the 
property of being possibly identical to Socrates at any possible 
world. Thus, taking the thisness of Socrates to be the property 
of being possibly identical to Socrates makes it an essence of 
Socrates. Note, however, that essences in the present sense 
are properties rather than concepts or attributes, and hence 
cannot be constituents of propositions or statements and can- 
not be used in the construction of possible worlds. Instead, 
they presuppose the notion of a statement. 

Plantinga objects to the preceding definition of 'essence' 
and 'essential property'. Instead, he defines an essential prop- 
erty of an object to be a property the object has at every world 
at which the object exists, and he defines an essence to be an 
essential property never possessed by any other object. This 
has the somewhat surprising consequence that every object has 
the property of existence essentially. The definition I proposed 
above seems somewhat more natural, although it has the con- 
sequence that most essential properties of most objects are 
conditional properties whose antecedents require existence. For 
example, being sentient is not an essential property of Soc- 
rates, because Socrates lacks that property at worlds at which 
he does not exist. Instead, being such that i f  he exists then he 
is sentient is an essential property of Socrates. 

The reason Plantinga defines 'essence' and 'essential prop- 
erty' as he does rather than as I have proposed is that he cham- 
pions what he calls serious actualism. This is the view that 
an object cannot have a property at a world at which that ob- 
ject does not exist. Although Plantinga endorses this view, I 
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regard it as problematic. In my opinion, serious actualism is 
either false or uninteresting, depending upon how it is inter- 
preted. Here is a potential counterexample: Socrates has the 
property of not existing at every world at which he does not 
exist. Plantinga's response to this is that there is no such prop- 
erty as that of not existing. There is the property of nonexist- 
ence, but that is a property nothing can have because in order 
to have it an object would have to exist without existing. Why 
would anyone say this? There is a very seductive modal fal- 
lacy to which I have found myself succumbing on occasion, 
and I suspect that Plantinga is succumbing to it here. The fal- 
lacy consists of endorsing instances of the following modal 
principle: 

(5.8) U ( W x  + Gx) 4 W x ) 0 ( F x  4 Gx). 

To see that this principle is invalid, let F be a tautologous 
predicate and let G be 'exists'. Assuming that our quantifiers 
range only over existing objects (which can be regarded as a 
convention rather than an endorsement of actualism-see sec- 
tion six), the antecedent of (5.8) is true because it is necessary 
that everything exists; but the consequent is false because it 
says that everything has necessary existence. 

Once one thinks about (5.8) in this way, it is apparent that 
it is invalid, and one's inclination is to question whether peo- 
ple really are seduced by it. Perhaps the simplest way to see 
that they are is to note that philosophers almost universally 
assume that logical analyses can be given the forms 

where ip ,  0,  etc., are open formulas. To see that this cannot be 
the proper form of logical analyses, suppose we take ^x = y1 
to abbreviate "0 x = yl. We have assumed the following modal 
principle: 

(5.10) D(Vx)(Vy)[x = y + D(x exists -> x = y)]. 

Given (5.10) and S5, the following is true: 

(5.11) Wx)(Vy)[x = y - x = y ] .  
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The reason (5.11) is true is that the quantifiers range only over 
existing objects, and at worlds in which x and y both exist, 
x = y iff x = y .  But clearly rx = y1 is not an adequate logical 
analysis of rx = yl. This is because there can be worlds at 
which the latter holds but the former fails-these are worlds 
at which x and y do not exist.27 This amounts to the obser- 
vation that although (5.11) is true, the following is not: 

(5.12) D(Vx)(Vy)D[x = y * x = y]. 

It is conditions like (5.12) that are required for logical anal- 
yses. In general, logical analyses must have the forms 

The confusion of (5.9) with (5.13) is precisely the modal fal- 
lacy of endorsing (5.8). 

Plantinga's endorsement of serious actualism is based upon 
the intuition that an object could not have a property if it did 
not exist. But the assertion that an object could not have a 
property if it did not exist is ambiguous between 

(5.14a) D(Vx)(x has P -+ x exists) 

and 

(5. I4b) U(Vx)D(x has P -> x exists). 

It seems to me that our intuition is only an intuition that (5.14a) 
is true, but serious actualism requires (5.140). The conflation 
of (5.14a) and (5.14b) is precisely our modal fallacy. 

Plantinga's response to this allegation is to admit that it is 
a fallacy to endorse (5.8), but to insist that (5.14b) is still 

' I assume that identity is an existence entailing property, i.e., x = y at 
a world only if x exists at that world. One might instead understand identity 
as rx = yl. In that case, we can simply define rx = y' as rx = y & x exists'. 
A second example of this same sort consists of observing that O(Vx)[x exists 
*-> (x is red or -x is red)], but an object satisfies rx is red or -x is red' 
even at worlds at which it does not exist. 

Many philosophers will find this particularly disturbing because it means 
that the statement of a logical analysis presupposes the concept of de re 
necessity. 
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true.29 After all, invalid principles can have valid instances. 
Plantinga defends this move by observing that, for example, 
Socrates could not be snubnosed without existing. This is in- 
tended as a defense of 

(Vx)D(x has P + x exists) 

and hence of (5.14b). 
It seems to me that the appropriate response to Plantinga's 

rejoinder is to agree that (5.14b) is true of some properties, 
such as the property of being snubnosed, but false of others, 
for instance, the property of not existing. As we have seen, 
Plantinga rejects this move by insisting that there is no such 
property as that of not existing. If this is merely a partial stip- 
ulation regarding how he is going to use the term 'property', 
then we cannot object to it except on the grounds that it makes 
serious actualism trivial and uninteresting. But Plantinga in- 
tends it to be more than this. Suppose we give Plantinga his 
use of the term 'property', agreeing that (5.14b) and serious 
actualism are true by stipulation for properties. Then it is nat- 
ural to want a more general term that would include both prop- 
erties and things like not existing. I want to say that although 
objects cannot have properties at worlds in which they do not 
exist (by the definition of 'property'), they can satisfy con- 
ditions at worlds in which they do not exist, and one such 
condition is that of not existing. Another such condition is that 
of being such that i f  one existed then one would be sentient. 
Socrates satisfies the latter at worlds in which he does not 
exist. 

Plantinga's response to all of this is to doubt that the notion 
of a condition makes sense. The simplest answer is to observe 
that in (5.6) we have defined a perfectly workable notion of 
a condition. That definition cannot be faulted on logical grounds. 
The only way to defend serious actualism against this move 
is to grant that there are conditions that are not "existence 
entailing" (i.e., such that an object can satisfy them at a world 
without existing at that world) and then go on to define prop- 

' In conversation. 
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erties to be existence entailing conditions. The effect of this 
is to make serious actualism true by definition, but pointless. 
It seems to me that a more reasonable alternative is to call 
both conditions and properties 'properties' (as I have in (5.6)) 
and acknowledge that some properties are existence entailing 
while others are not. This has the effect of making serious 
actualism false, but not trivially false because it is of some 
interest that there are properties (or conditions) that are not 
existence entailing. The upshot of this is that serious actualism 
is either false or uninteresting, depending upon just how we 
choose to use the term 'property'. Henceforth, I will use it in 
the broad sense that includes conditions. 

Predicates bear intimate relations to a variety of abstract en- 
tities. The sense of a predicate is an attribute, and this is what 
explains how the predicate functions in making statements. I 
have urged that synthetic predicates also "connote" nomic 
kinds, the latter playing a role in determining what attribute 
is expressed by a synthetic predicate. In addition, predicates 
are related in an important way to properties. Each attribute 
determines a property, viz., 

(5.15) If a is an attribute, the property corresponding to a 
is that function-in-intension that assigns to any object 
x the state of affairs x's exemplifying a. 

Relative to any particular assignment of values to the prag- 
matic parameters, a predicate expresses an attribute. I will say 
that the predicate designates the property corresponding to that 
attribute. When a predicate F designates a property P, I will 
describe P as "the property of being F1 (e.g., 'the property of 
being water'). 

Let us say that two predicates F and G are nomically equiv- 
alent iff it is physically necessary that something is an F iff 
it is a G. More accurately, two predicates are nomically equiv- 
alent (relative to a particular assignment of values to the prag- 
matic parameters) iff their senses are nomically equivalent. 
Kripke and Putnam have urged that nomically equivalent nat- 
ural kind terms designate the same property. It is impossible 
to tell the extent to which what they mean by 'designate' and 
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'property' is the same as what I mean, but our present frame- 
work does enable us to make sense of their claim. Natural kind 
terms are synthetic predicates. Nomically equivalent synthetic 
predicates connote the same nomic kind and hence express the 
same attribute. It follows that nomically equivalent synthetic 
predicates designate the same property. This seems at least to 
be a reasonable reconstruction of what Kripke and Putnam were 
getting at. 

In section four, it was shown that if (4 .14 )  holds (according 
to which possible worlds have necessary existence and are 
necessarily possible worlds, and any proposition true at a pos- 
sible world is necessarily such that it is true at that world), 
then de dicto modal operators satisfy S5. Now that we have 
introduced the concept of a property, we are in a position to 
consider de re modal operators and first-order modal logic. 
Kripke [I9631 constructs a first-order version of S5, which I 
will call KS5. Let us define a closure of an open formula 
to be a closed formula resulting from appending to the begin- 
ning of the formula an alternating string of universal quanti- 
fiers and necessity operators, beginning with a necessity oper- 
ator and ending with a universal quantifier. For example, 
rO(Vx)U(Vy)Fxyl is a closure of "Fry1.  The single rule of 
inference for KS5 is modus ponens for the material condi- 
tional, and the axioms are closed formulas of the following 
forms and all closures of formulas of the following forms: 

( A l )  Up where p is truth-functionally valid; 
642)  U p  -  ̂p; 
(A3)  D ( D p  -+ P);  
(A41 D [ D ( P  + a)  + {UP -  ̂W; 
( A 5 )  U [ O p  -+ O O p l ;  
(A6) U p  + D D p ;  
( A 7 )  D[p -  ̂( V X ) ~ ]  provided x does not occur free in p;  
('48) W x ) ( p  -+ a )  -  ̂ [(VX)P -  ̂(Qx)al}; 
( A 9 )  D(Vy)[(Vx)p + Sb(ylx)p] where Sb(ylx)p results from 

replacing all free occurrences of x in p by y ,  and y 
does not occur in p .  30 

30 These axioms are not the same as Kripke's, but they are equivalent. 
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We can show quite easily that any proposition having the form 
of some theorem of KS5 is true, provided the following holds 
in addition to (4.14): 

(5.16) D(Vw)(VP)(Vx)[if w is a possible world and P is a 
property and x has P at w then UJw is a possible 
world and w exists) and Dp(P is a property and P 
exists) and Q x , ~  has P at w]. 

The argument is simple. Any closed formulas having the form 
of one of (A1)-(A9) will be true for the same reasons the 
axioms of S5 were all true. Now consider an open formula of 
one of these forms. For instance, consider (A3) (the other ax- 
ioms being analogous). Suppose p contains a single free vari- 
able 'x'. Then "U(0p Ã‘ p) l  is the form of a monadic con- 
cept. If a is such a concept, then U(Vx)(a:x) is a proposition 
of the form rU(Vx)U(Up -+ p) l .  For the same reason every 
proposition of the form " 0 ( 0 p  -+ p) l  is true, every object 
exemplifies any concept of the form "U(Qp + p)l .  Thus every 
object exemplifies a ,  i.e., (Vx)(a'.x) is true. In arguing this it 
makes no difference which world is actual, so this is true at 
every possible world, i.e., U(Vx)(a:x) is true. 

Next suppose p contains two free variables 'x' and 'y'. Then 
"D(Up -* p) l  is the form of a binary concept. Let a be such 
a concept. Then U(Vx)D(Vy)(a:x,y) is a proposition having 
the form of a closure of "D(0p Ã‘ p)'. For any object b, there 
is such a monadic property as (a:b,y). Then by (5.16), there 
is necessarily such a monadic property as (a:b,y). Just as above, 
it is necessarily true that every object has that monadic prop- 
erty, i.e., D(Vy)(a:b,y). This holds for any object b, so we 
have established that necessarily, for every x, the latter holds. 
That is, U(Vx)U(Vy)(a:x,y) is true. 

Next suppose p contains three free variables 'x', 'y', and 
'z', and a is a ternary concept having the form "U(Dp + p)'. 
We want to establish the truth of D(Vx)n(Vy)U(Vz)(a:x,y,z). 
As above, necessarily, for any object b there is such a binary 
property as (a:b,y,z). Then by (5.16), necessarily, for any ob- 
ject c there is such a monadic property as (a:b,c,z). Then as 
above, it is necessarily true that every object has this monadic 
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property. Consequently, O(Vx)D(Vy)D(Vz)(a:x,y,z) is true. 
Obviously, we can establish in an analogous fashion that 

any proposition having the form of an axiom of KS5 is true. 
Thus if (5.16) holds, de re modal operators for propositions 
satisfy KS5. 

We have been talking about modal propositions. Next con- 
sider modal statements. We have noted that statemental modal 
operators are not related in any simple way to possible worlds. 
Nevertheless, it is easily established that any statement having 
the form of some theorem of KS5 will be true. If is such a 
statement, then the possible sent and acceptable received prop- 
ositions for $ will be propositions having the form of that same 
theorem. All such propositions are true, so it follows that I) 

is true. Consequently, given (5.16), KS5 holds for statemental 
modal operators as well as for propositional modal operators. 

6 .  Actualism 

Actualism is the view that there isn't anything that doesn't 
exist.31 Actualism is apt to seem like the merest tautology, but 
there must be more to it than that, or people would not have 
thought it worth discussing. Consequently, the initial diffi- 
culty in assessing actualism is in deciding what it means. The 
exact way in which it is phrased is important. It cannot be 
rephrased as the view that there does not exist anything that 
does not exist, because that really is a tautology. No one would 
deny that. The content of actualism is intimately connected 
with the sentence 'There are things that don't exist'. If ac- 
tualism is to be claiming something interesting, it must imply 
that there is no reasonable sense in which this sentence can 
be understood that makes it express a truth. This is really a 
claim about the interpretation of quantifiers and the meaning 

' Unfortunately, the term 'actualism' has also been used for a number of 
other views. See Alan McMichael [1983], 49-53. I follow Plantinga [I9761 
in my use of the term. 

Despite the similarity of the names, there is no close connection between 
actualism and serious actualism. Plantinga [1979] argued that serious ac- 
tualism could be derived from actualism, but he has since given up that claim. 
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of 'there is'. The claim of the actualist is that there is no rea- 
sonable way to understand " ( 3 ~ ) ~  that allows it to range over 
merely possible objects. Let us call the denial of actualism 
'possibilism' . 32 

Actualism seems to me to be false. Suppose we agree to 
interpret r(3x)1 as the actualist wants it interpretedÃ‘G'exis 
tentially". The question is then whether we can make sense 
of another quantifier that can be interpreted as "ranging over 
all possible objects". Given the existential quantifier together 
with other notions respectable to the modal logician, I believe 
that we can do just that. For this purpose we have the ordinary 
modal operators at our disposal. This immediately suggests 
defining a "possibilistic" quantifier " ( 3 ~ ) ~  as ^0(3x)'. In a 
sense, this does give us a way of talking about merely possible 
objects, but it will not work as a possibilistic quantifier. If 
there is to be any way of defining a possibilistic quantifier 
^('3x)l, it must make possibilism true by making ^(^x} x does 
not exist1 true. But what r0(3x)  x does not exist1 says is, 
roughly, that there are possible worlds at which it is true that 
there exist things that do not exist-and that is false. The dif- 
ficulty with taking rO(Sx)l as a possibilistic quantifier is that 
although it talks about possible objects, it does not talk about 
how they are at the actual world but rather how they are at 
other possible worlds. What we want ^(3x)Fx1 to say is that 
there are possible objects that are actually F, i.e., that are F 
in the actual world. This cannot be expressed in ordinary 
quantified modal logic, but it can be expressed with the ad- 
dition of another modal operator-the 'actually' operator 'A'. 
For example, suppose we want to symbolize the true state- 
ment, 'It is possible for there to be something that doesn't 
actually exist'. This cannot be symbolized in standard first- 
order modal logic, but using the 'actually' operator, it can be 
symbolized as 'O(3x)A x does not exist'. Although 'actually' 

32 The version of possibilism I will be discussing here is that allowing 

quantification over possible objects. Plantinga points out (in conversation) 
that there are stronger versions of possibilism involving quantification over 
impossible objects as well (round squares and the like), but I do not propose 
to defend them here. 
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can be understood without appealing to possible worlds (after 
all, ordinary people understand it), possible worlds do provide 
a vehicle for its analysis. At least in many contexts, "(. . .AP..  .)I 
can be analyzed as r(3w)[w is a world & w obtains & (...it 
is true at w that P. ..)I1. 'Actually' works like a wide-scope 
occurrence of 'at the actual world'. Applying this to possi- 
bilistic quantifiers, r(3x)Fx1 is supposed to say that there are 
possible objects that are actually F. I propose that the most 
reasonable way of understanding this is as saying that it is 
possible for there to be objects that are actually F ,  i.e., as 
rV(3x)ATy. Thus, my preliminary proposal for the partic- 
ular possibilistic quantifier is that ^(3x)l be defined as 
"V(3x)A1. The universal possibilistic quantifier '"(VX)~ can 
be defined as "-(SX)-~, or equivalently as '"D(Vx)A1. For 
reasons I will explain shortly, this definition must be refined 
somewhat for use in modal contexts, but it is entirely adequate 
for a possibilistic quantifier of use in nonmodal contexts. This 
quantifier has the effect of ranging over possible objects (i.e., 
objects that exist in other possible worlds) and saying how 
they are at the actual world. And it does so in a metaphysically 
innocuous way. Furthermore, it makes the possibilistic thesis 
r('3x) x does not exist1 true. I would stop short of claiming 
that "(3x)l is one meaning of the English 'there is'. I don't 
know whether that is true or not, but that does not seem to 
me where the important question lies anyway. All I want to 
claim is that ^(3x)l is one reasonable thing a philosopher might 
mean by 'there is' in possibilistic contexts, and that is enough 
to make possibilism true and actualism false. 

In order to explain the need for a further refinement in the 
definition of possibilistic quantifiers, let us first consider the 
logic of 'actually'. I have explained 'actually' as involving a 
wide-scope occurrence of 'at the actual world'. The require- 
ment that the occurrence always be wide scope has the con- 
sequence that the logic of 'actually' behaves rather peculiarly 
in certain respects.33 For example, '"P -Ã QAP1 is valid. This 

' The logic of 'actually' has been investigated independently by Crossley 
and Humberstone [I9771 and Kaplan [1976]. 
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can be seen by noting that rP += DAP1 expands to 

(3w)[w is the actual world & 
(P -* D(it is true at w that P))]. 

This is true because if a proposition is true at a world then it 
is necessarily such that it is true at that world. Thus, for ex- 
ample, because 

(6.1) Grass is green 

is true, 

(6.2) Necessarily, grass is actually green 

is also true. This is because according to the proposal we are 
considering, (6.2) means: 

(6.3) (3w)(w is the actual world & D(grass is green at w)). 

But it is counterintuitive that (6.2) should be true. There is a 
strong tendency to read (6.2) as meaning 

(6.4) D(3w)(w is the actual world & grass is green at w). 

(6.4) is false. The difference between (6.3) and (6.4) is one 
of scope. Realistically, I think it must be admitted that the 
English sentence (6.2) is ambiguous between (6.3) and (6.4), 
with (6.4) being the preferred reading. 

The explanation of 'actually' as involving a wide-scope oc- 
currence of 'at the actual world' makes it work the way lo- 
gicians have taken it to work, but for the reasons just given, 
that strikes me as an oversimplification. 'Actually' often works 
like a wide-scope occurrence of 'at the actual world', but not 
invariably. We could obtain a more accurate representation of 
'actually' as it functions in English by describing it as short 
for 'at the actual world' where the scope of the latter is am- 
biguous (just as it is for most definite descriptions). Accord- 
ingly, (6.2) can be used to mean either (6.3) or (6.4). Dif- 
ferences in the scope of 'actually' only make a difference insofar 
as they include or exclude different modal operators. When 
the scope of 'actually' occurs within the scope of several modal 
operators, it is the modal operator of narrowest scope that con- 
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trols the behavior of 'actually'. For example, in "DAP1 the 
scope of 'A' can either include or be included in the scope of 
'D', yielding the two readings: 

(6.5) (3w)[w is the actual world & D(it is true at w that 
P)I; 

(6.6) D(3w)(w is the actual world & it is true at w that P). 

Formally, we can resolve the ambiguity by indexing modal 
operators and 'actually' operators with numerical subscripts 
when necessary (the ordering of the subscripts having no sig- 
nificance). In general, if 'A' occurs without a subscript or if 
"A? does not occur within the scope of a modal operator hav- 
ing the same subscript, its use is analyzed as above as in- 
volving wide-scope. But if "Ail does occur within the scope 
of a modal operator having the same subscript, 
"(...Ui(. . .Ai+. . .). . .)" is analyzed as "(. . .D(3w)(w is the ac- 
tual world & (. . ,+ is true at w.. .)). . .)l.  This allows us to dis- 
tinguish between (6.5) and (6.6) by writing "DAP1 (or 
rUIAJ") and rDiAIP1, respectively. With this convention, 
"P + DAP1 is valid, but rP -r DIA,P1 is not. 

Now let us apply these refinements in the analysis of 'ac- 
tually' to the definition of possibilistic quantifiers. That def- 
inition must be refined to make possibilistic quantifiers work 
properly in modal contexts. Suppose, for example, that we 
think there is a "maximally populated" world at which all 
possible objects exist. We would like to express that hypoth- 
esis as: 

(6.7) O(Vx) x exists. 

But (6.7) does not say what we want it to say. Expanding (6.7) 
in terms of our definition of the possibilistic quantifiers, we 
obtain 

(6.8) 0-O(3x)A- x exists, 

which means: 

(6.9) (3w)[w is the actual world & 0-O(3x)- x exists at 
wl . 
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Assuming S5, (6.9)  is equivalent to: 

(6.10) (3w)[w is the actual world & D(Vx) x exists at w ] .  

But (6.10) says that the actual world is maximally populated, 
whereas all we wanted (6.7)  to say was that there is a max- 
imally populated world, i. e. ,  

(6.11) 0 ( 3 w ) [ w  is a world & 
w is actual & -0 (3x) -  x exists at w ] .  

The difference between (6.9) and (6.1 1 )  is a difference be- 
tween the relative scopes of 'A' and the initial occurrence of 
'0'. In (6.9) the initial occurrence of '0' is contained within 
the scope of ' A ' ,  whereas in (6.11) the scope of 'A' is con- 
tained within the scope of the initial occurrence of '0'. This 
example illustrates that in a formula of the form "(. . .(3x)(p.. .)', 
we want the scope of 'A' to be <p. Thus, if the possibilistic 
quantifier does not occur within the scope of a modal operator, 
"(.. .(3x)w. . .)l  should be defined to mean "(. .. O(3x)A (p...)'. 

On the other hand, if the possibilistic quantifier does occur 
within the scope of a modal operator, so that the formula has 
the form '"(. . .D.. .(3x)(p.. .)" with the indicated modal operator 
being the innermost modal operator containing the possibilis- 
tic quantifier within its scope, then ' " ( . . . U . . . ( ~ X ) ~ . . . ) '  
should be defined to mean r(...~...0(3x)Aia)...)1. With 
this refined convention, (6.7) becomes equivalent to (6.1 1 )  
rather than to the undesirable (6.10). This implies that, com- 
pletely in general, "(. . .(3x)(p.. .)' is equivalent to ^(. . . (:^w)[w 
is a world & w is actual & 0(3x)(tp is true at w ) ] .  . .)'. 

Some of the logical properties of possibilistic quantifiers are 
of considerable interest. It has frequently been observed that 
classical first-order logic is in certain respects unreasonable. 
It has often been felt that first-order logic should be modified 
to accommodate nondenoting singular terms and empty do- 
mains, the resulting logic being a "free logic".34 In this con- 
nection, it is significant that the nonmodal fragments of most 
first-order modal logics are not the same as classical first-order 

" See section five of Chapter Six for further discussion of this. 

89 



111. Possible Worlds 

logic. Suppose, however, that we begin with such a first-order 
modal logic and then define our possibilistic quantifiers as 
above. Assuming the validity of S5 modal principles, it turns 
out that the logic of r(3x)1 is classical first-order logic. Sup- 
pose we also define rE(x)l as V y )  y = x1 and rx = y1 as 
"0 x = y1 (or equivalently as ^\Z\(E(x) + x = y)'. Assuming 
the validity of principle (5.10) (the necessity of identity), the 
logic of r(3x}1 and r=l includes all of classical first-order 
logic with identity. It includes more, however. Presumably, 
it is necessarily possible that there are two different objects, 
that there are three different objects, and so on, so the fol- 
lowing principles should be valid: 

But these are not theorems of classical first-order logic. 
It is worth noting that if we take '"(Sx)"', ^E(x)^, and r=l 

as primitive, we can define our ordinary operators in terms of 
them: 

Possibilistic quantifiers and "reference" to possible objects 
can proceed just like existential quantifiers and reference to 
actual objects. If we know that r(3x)(Vy)(Fy <-> y = x)l is 
true, then we know that "there is exactly one possible object 
that is F", and we can use this to introduce a singular term 
"denoting" that possible object. For example, we could con- 
textually introduce sharp-bracket definite descriptions '(tx)Fxl 
a la Russell using possibilistic quantifiers. An example of this 
is due to Gary Rosenkrantz, who considers a factory in which 
objects are manufactured out of parts. We might have tables 
manufactured out of table tops and pedestals. Consider a par- 
ticular table top X and pedestal Y that are never actually joined 
to form a table (each becomes part of a different table). Never- 
theless, it seems that at every possible world in which they 
are joined, the same table results. Thus, there is a unique pos- 
sible table resulting from their being joined, and we could re- 
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fer to it by using the term '"(it) t results from joining X and 
V.  Of course, it could reasonably be objected that this is not 
actually reference or denotation because a term cannot denote 
something that does not exist, but that strikes me as a verbal 
quibble. We can call it '(denoting)' if that makes people feel 
better. 

In sum, I think it must be concluded that actualism, taken 
as the claim that no sense can be made of quantification over 
possible objects, is false. 

7. Possibilistic Set Theory 

The legitimacy of quantification over possible objects is in- 
teresting. What is of even more interest is that possibilistic 
quantifiers allow us to talk about sets of nonexistent but pos- 
sible objects. In this connection, let us begin by noting that 
there is a fairly compelling argument purporting to show that 
a set cannot exist if its members do not exist.35 Let X be a set 
of actual objects and suppose xEX. Let w be a world at which 
x does not exist. Suppose X exists at w. Then 

is true at w. We would like to conclude from this, by the 
axiom of extensionality, that '"X = X-{x}' is true at w. For 
this purpose we must formulate the axiom of extensionality 
as: 

Using (7. I),  we cannot yet conclude that '"X = X-{x}' is true 
at w unless we know not only that X exists at w, but also that 
X is a set at w. This follows from the apparently true assumption: 

Given (7.1) and (7.2), we can conclude that rX = X- { }  x l is 
true at w. But then by (5.10) (the necessity of identity), we 

' This argument is based upon an argument given by Plantinga [1976]. 
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obtain the conclusion that "X = X-{xp is true at the actual 
world. Consequently, the assumption that X exists at w is false. 
What we have proven is: 

(7.3) WX)(Vx)[(Set(X) & xâ‚¬ + D(E(X) + @))I. 

It follows from (7.3) that we cannot literally have sets of non- 
existent objects. But we can achieve the effect of sets of non- 
existent objects using possibilistic quantifiers. Sets of possible 
objects can be regarded as possible sets of objects, i.e., sets 
that actually exist at other worlds (worlds at which their mem- 
bers exist). For this purpose, let us define: 

Then through the use of possibilistic quantifiers we can achieve 
the effect of talk about sets of possible objects. For example, 
'There is a set consisting of two possible unicorns' is trans- 
lated as 

which is presumably true. 
It is of interest to ask what principles are true of possible 

sets. Let us begin by assuming that Zerrnelo-Fraenkel set the- 
ory holds for actual sets. More accurately, consider the fol- 
lowing standard set-theoretic axioms: 

(7.7) Extensionality: (VX)(VY){(Set(X) & Set(Y)) -> [X = Y 
++ (Vz)(zâ‚ <-> ZGY)]}. 

(7.8) Union: (VX)(Set(X) + (3Y)(Vz)[zEY <-> (3W)(zâ W & 
Wex)]). 

(7.9) Power Set: (VX)[Set(X) -> (3Y)(Vz)(zâ‚ <-> z C X).  

(7.10) Pair: (Vx)(Vy)(3Z)(Vw)[wEZ <-> (w = x v w = y)]. 

(7.11) Infinity: (3X)[0â‚ & (VyXYGX + Yu{Y}â‚¬X) 

(7.12) Regularity: (VX)((3y)yâ‚ + (3y)kâ‚ & Xny = 01). 
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(7.13) Set: (VX)[(3y)yâ‚ + Set(X)}. 

(7.14) Separation: If Fy is a formula in which y occurs free 
but X and Y do not, then the following is an axiom: 
(VX)(3Y)[Set(Y) & (Vx)(zâ‚ * (zEX & Fy))] .  

(7.15) Replacement: If Fxy is a formula in which x and y 
occur free but X and Y do not, then the following is 
an axiom: (VX)(if (Vx)(xâ‚ -+ (3!y)Fxy) then 
(3Y)[Set(Y) & (Vy)(.yâ‚ * (3x)(xâ‚ & ~ x y ) ) ] ) . ~ ~  

I assume that (7.7)-(7.15) are necessarily true. (7.7)-(7.14) 
constitute a version of Zerrnelo set theory. (7.7)-(7.9), (7.11)- 
(7.13), and (7.15) constitute a version of Zermelo-Fraenkel 
set theory, which includes all of Zermelo set theory. 

We can transcribe the preceding axioms into axioms re- 
garding possible sets. Assuming (7. l), (7.2), and (7.8)-(7.15), 
the following can be established without further assumptions: 

(7.16) Extensionality: (VX)(VY){((Set)(X) & (Set)(Y)) + 
[X = Y ^ (Vz)(z(â‚¬ * z (â‚¬)Y)]  

(7.17) Union: (VX)((Set)(X) -  ̂('3Y)(Vz)[z(â‚¬ * 
(W(z((E)W & W(â‚¬)X)l  

(7.1 8) Power Set: (VX)((Set)(X) -+ ( 3  Y)(Vz)[z(â‚¬ * 
W w ) ( w ( ~ ) z  -  ̂w(â‚¬)x) l  

(7.19) Infinity: (3X) [0 (E)X  & (W(Y(â‚¬ + Yu{Y}(â‚¬)X 

(7.20) Set: (QX)[(3y)y(â‚¬ -  ̂(Set)(X)} . 

The formula rFyl in the axiom scheme of separation (prin- 
ciple (7.14)) is required to be a formula of first-order set the- 
ory. The analogue of (7.14) for possible sets will allow rFyl 
to contain possibilistic quantifiers, modal operators, and so 
forth. Accordingly, we cannot derive that analogue from our 
present assumptions. However, (7.14) presumably holds only 
because a stronger (essentially second-order) principle holds: 

36 r(3!y)~xy1 means rthere is a unique y such that Fxŷ  
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(7 .21 )  Strong Separation: If a is any monadic concept then 
the following is necessarily true: (VX)(3Y)[Set(Y) & 
(Vz)(zâ‚  * ( zâ ‚  & z  exemplifies a ) ) ] .  

Given (7 .21)  we can immediately establish: 

(7 .22)  Strong Separation: If a is any monadic concept then 
the following is necessarily true: (VX)(3Y)[(Set)(Y) & 
(Vz)(z (â‚¬ * ( z (â ‚¬  & z  exemplifies a ) ) ] .  

The only axioms remaining to be established are the pair 
axiom and the axiom scheme of replacement. The pair axiom 
is as follows: 

(7 .23)  Pair: (Vx)(Vy)(3Z)(Vu)[u(â‚¬ - (u  = x v u = y ) ] .  

Given our other assumptions, (7 .23 )  is equivalent to the as- 
sumption that if a possible object x exists at a world w, and 
another possible object y  exists at a world w*, then there is a 
world at which both x and y  exist. Given the latter assumption, 
it follows from (7 .10 )  that there is such a possible set as {x ,y} .  
Conversely, given (7 .23 ) ,  there must be a world at which {x,y}  
exists, and that must be a world at which x and y  both exist. 
This seems like a safe assumption, so I conclude that (7 .23 )  
is true. 

As in the case of separation, if we are to derive the axiom 
scheme of replacement for possible sets from our assumptions 
about actual sets, we must replace (7 .15 )  with a stronger sec- 
ond-order principle: 

(7 .24)  Strong Replacement: If a is any binary concept then 
the following is necessarily true: (VX)(if  (Vx)(xâ‚ 

(3 \y) (x ,y)  exemplifies a)  then (3Y)[Set (Y)  & 
(Vy)(yâ‚ * (3x ) (xâ ‚  & (x , y )  exemplifies a) ) ] ) .  

The possibilistic analogue of (7 .24 )  is: 

(7 .25)  Strong Replacement: If a is any binary concept then 
the following is necessarily true: (VX)(if  (Vx)(x(â‚¬ 
+ (3!y ) (x , y )  exemplifies a)  then (3Y)[ (Set ) (Y)  & 
(Vy)(y(â‚¬ * (3x)(x(^}X & (x , y )  exemplifies a) ) ] ) .  
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Somewhat surprisingly, given two apparently innocuous as- 
sumptions, (7.25) is equivalent to the following very strong 
assumption about possible worlds: 

(7.26) Given any set W of possible worlds, there is a pos- 
sible world w such that anything existing at any of 
the members of W exists at w.~' 

To derive (7.25) from (7.26) we need the assumption that for 
any possible object x, there exists the set of all possible worlds 
at which x exists. Given this assumption, we can reason as 
follows. Suppose X is a possible set satisfying the antecedent 
of (7.25). Let w be a world at which X exists. Then at w we 
have: 

(Vx)[xâ‚ += (3!Y)(3y)((x,y) exemplifies a & Y is the set 
of all possible worlds at which y exists]. 

In other words, a restricted to X is a function, and Y is the 
set of all possible worlds at which a(x) exists. For each x in 
X, let 3(x) be this unique Y.  Then by (7.24), {Q(x)\ xEX} exists 
at w. If W = {x} u u{(~(x)\ xEX}, then W is a set of possible 
worlds such that for each x in X, a(x) exists in some member 
of W .  By (7.26), there is a world w* in which anything ex- 
isting in any of the members of w exists. Thus for each x in 
X, both x and a(x) exist in w*. It follows from (7.24) that {yl 
(3x)((x,y) exemplifies a and x(â‚¬)X exists in w* and hence 
is a possible set in the actual world. This establishes (7.25). 

Conversely, in order to derive (7.26) from (7.25), we re- 
quire a rather complicated assumption. The assumption has 
two parts. First, I assume that there is a kind of "basic" object 
(roughly, "concrete objects") such that if all the basic objects 
existing in a world w also exist in another world w*, then 
every object existing in w exists in w*. For example, if all the 
basic objects of w exist in w*, then all sets of basic objects 
existing in w also exist in w*. The second part of the as- 

' Of course, the quantification in this principle is to be understood as 
possibilistic quantification. 
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sumption is that for each possible world w, there is a possible 
set D(w) (the domain of w) whose members are all the possible 
basic objects existing in w. We can then reason as follows. 
Let W be a set of possible worlds. We are assuming that pos- 
sible worlds exist necessarily, so W exists at the actual world. 
We have (Vw)(wâ‚ + (3D) D is the domain of w), so by 
(7.25) there is a possible set Y whose members are just the 
domains of the members of W. By (7.17), there is such a pos- 
sible set as UY, which is a possible set consisting of every 
basic object existing in any member of W. To say that UY is 
a possible set is to say that there is a world w at which it is 
an actual set, i.e., at which all of its members exist. w is then 
a world such that every basic object existing in any of the 
members of W exists in w. But then it follows from our as- 
sumption that everything existing in any of the members of W 
exists in w. 

Having seen that (7.25) is equivalent to (7.26), what can 
we conclude about the truth of (7.25)? (7.25) must be re- 
garded as problematic, because (7.26) is problematic. (7.26) 
implies that if there is a set of all possible worlds then there 
is a world at which all possible objects exist. It is normally 
assumed that there is a set of all possible worlds, but the con- 
clusion that there is a world at which all possible objects exist 
is extremely implausible. To the contrary, I would suppose 
that the following is a necessary truth: 

O(3x)-A x exists. 

Thus, we must either reject (7.25) and (7.26) or reject the 
assumption that there is a set of all possible worlds. I feel 
some temptation to reject the latter assumption on the grounds 
that a set of all possible worlds would be a "very large" set 
of the sort we know to cause trouble in connection with the 
set-theoretic antinomie~.~'  But the situation is far from clear. 
Without further argument, we cannot assume (7.25), and hence 

38 Fortunately, this assumption is not needed for most of the purposes of 
philosophical semantics. 
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we do not have all of Zermelo-Fraenkel set theory for possible 
sets. We can, however, safely assume that we have all of Zer- 
melo set theory. 

Within axiomatic set theory, the failure of the axiom scheme 
of replacement would be a disaster. It plays an essential role 
in the development of ordinal number theory, which in turn 
is fundamental to most of the interesting parts of set theory. 
But this is not a problem for possibilistic set theory. Presum- 
ably, sets of ordinal numbers have necessary existence. That 
would seem to hold for all sets built exclusively from objects 
themselves having necessary existence. 39 We can actually prove 
this from our set-theoretic axioms if we assume the following 
principle: 

(7.27) U(VX){[Set(X) & (Vy)(yâ‚ -  ̂y exists at w)] --> X 
exists at w}. 

This implies that sets of necessarily existing objects exist 
necessarily: 

(7.28) W X ) ( { S e t ( X )  & (Vy)(yEX -  ̂OE(y))I -  ̂QE(X)). 

Given (7.28), it follows by transfinite induction on the rank 
of a set that all sets built exclusively from necessarily existing 
objects have necessary existence. Thus, all of "pure" set the- 
ory is going to hold in every possible world. It is only when 
we turn to sets built in part from contingently existing objects 
that the axiom scheme of replacement will fail for possibilistic 
set theory, and that will be a very minor failing. When we 
apply set theory to sets of concrete objects, we rarely use very 
powerful principles. We can get along quite nicely without 
applying the axiom scheme of replacement to contingently ex- 
isting sets. 

My conclusion is that there are no serious obstacles to talk- 
ing about sets of possible objects and manipulating them in 
familiar set-theoretic ways. At least in all mundane respects, 
they work exactly like sets of actual objects. 

39 More accurately, it would seem to hold for all sets whose transitive 
closures contain only objects having necessary existence. 
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8. Existentialism 

I have assumed in a number of places that states of affairs 
and possible worlds exist necessarily. That might reasonably 
be doubted, however. If we consider a state of affairs like 
Keith's winking at a pretty girl, it might seem that this state 
of affairs would not exist if Keith did not exist. It would fol- 
low that a possible world does not exist if any of the objects 
in it fail to exist. Plantinga calls this thesis existentialism, and 
rejects i t .  We can formulate existentialism precisely as follows: 

(8 .1 )  Existentialism: For any state of affairs S ,  if 
[x ,  , . . . , xna]  C S then, necessarily, S does not exist 
if any of xl ,..., xH fail to exist. 

At one time, I was convinced that existentialism was true, but 
I have recently become convinced that Plantinga is right and 
existentialism is false.41 

States of affairs "involve" objects in them. For example, 
Socrates' being snubnosed involves Socrates in a special way. 
Advocates of existentialism feel that Socrates is a "constitu- 
ent" of this state of affairs in much the same way that mem- 
bers of a set are constituents of the set, and accordingly they 
feel that the state of affairs cannot exist without Socrates ex- 
isting. More generally, any state of affairs containing Socra- 
tes' being snubnosed will fail to exist if Socrates does not 
exist. Ultimately, the defense of existentialism comes down 
to this int~i t ion.~ '  Plantinga's response is to object that the 
notion of a constituent is too vague and unclear to be of much 
use here. It must be admitted that there is a certain amount of 
justice to this charge. But it must also be admitted that the 

See Plantinga [1979] and [1983]. 
' My conversion has been a slow one. Originally, I thought that existen- 

tialism was true. Then in Pollock [I9841 I maintained that the question was 
a peculiar one not admitting of a determinate 'yes' or 'no' answer. Now I 
think it is false. 

42 See, for example, R.  M. Adams [I9811 and Alan McMichael [1983]. 
In interpreting the latter, note that he conflates what are here called 'ac- 
tualism' and 'existentialism'. 
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existentialist intuition is a fairly compelling one. The issue has 
proven to be a very difficult one to resolve.43 

I now feel, however, that a precise argument can be given 
establishing that the existentialist intuition is subtly incoherent 
and existentialism is inconsistent. The argument turns upon 
the observation that if existentialism is correct then there is a 
distinction between a possible world's obtaining and its being 
actual. The distinction arises as follows. Possible worlds are 
states of affairs. Thus, if existentialism is correct and states 
of affairs do not exist when their constituent objects do not 
exist, then neither do possible worlds. Consider a possible world 
w containing Socrates' not existing. Socrates is a constituent 
of w, so if w obtains then w does not exist. For this reason, 
if w obtained then w would not be the actual world. In fact. 
w would not be a world at all, i.e., 

U[if w obtains then -(3w*)(w* is a possible world and 
w* = w)l. 

We established principle (3.14) according to which it is nec- 
essarily true that there is a possible world that is actual, i.e., 

D(3w*)(w* is a possible world and w* obtains). 

Consequently, if w obtained then there would be a state of 
affairs w* distinct from w that would then be a possible world 
and would obtain and hence be the actual world. If w* con- 
tained either Socrates' existing or Socrates' not existing, then 
contrary to supposition, it would not exist if w obtained. It 
follows that w* is not a maximal state of affairs relative to the 
set of all states of affairs now existing, and hence w* is not 
now a possible world. On the other hand, if w* obtained then 
w* would be maximal because Socrates' not existing would 
not exist. Most possible worlds (i.e., most things that are pos- 
sible worlds at the actual world) either require that some cur- 
rently existing objects do not exist or that some additional ob- 

43 Plantinga [I9831 gives an argument intended to refute existentialism, 
but I have responded to it in Pollock [1984], maintaining that it begs the 
question. 
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jects do exist, in which case it follows from existentialism that 
if they obtained, they would not be possible worlds and hence 
would not be actual. 

Existentialism is thus committed to there being a distinction 
between a world obtaining and its being actual. But as I will 
now show, that distinction leads to an inconsistency. Let S be 
Socrates' not existing. As S is possible, it follows by (3.14) 
that there is a world w at which S obtains, i.e., S C w. If w 
obtained then Socrates would not exist and hence, according 
to existentialism, neither w nor S would exist. It is a necessary 
truth that there is an actual world (by (3.14) it is the infinite 
conjunction of all (existing) states of affairs that actually ob- 
tain), so if w obtained then there would be a world w* (which 
is not now a world) that would exist and obtain. w* would be 
the actual world if w obtained. As w* would exist if w ob- 
tained, it must not be the case that S C w*. As w* would be 
a possible world, it would be maximal with respect to the states 
of affairs then existing, but as we have seen, that does not 
require w* to contain either S or -S because neither of these 
states of affairs would exist. However, because it would be 
maximal, w* would have to contain an "enumerative" state 
of affairs E listing all of the contingent objects existing at w*. 
E would be a state of affairs of the form being the set of 
all contingent objects1. As Socrates is not among the contin- 
gent objects existing at w*, E, and hence also w*, is neces- 
sarily such that if it obtains then Socrates does not exist. But 
that means, by definition, that S C w*. Thus, existentialism 
requires that S both is and is not contained in w*. Therefore, 
existentialism is inconsistent. 

What the preceding argument actually shows is that the ex- 
istentialist intuition is incoherent. We cannot simultaneously 
allow that states of affairs contain objects in some literal sense 
that makes their existence dependent upon the existence of 
those objects, and also agree that a necessary and sufficient 
condition for x's being F to obtain is that x is F. The latter 
requires that if F is such that an object is automatically F if 
it does not exist, then x's being F is contained in worlds at 
which x does not exist, and that in turn requires those worlds 
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both to exist and not exist. Thus I take existentialism to be 
definitively refuted. 

The failure of existentialism does not by itself imply that 
states of affairs and possible worlds have necessary existence. 
As formulated in (8. I ) ,  existentialism only concerns one way 
in which states of affairs and possible worlds might fail to 
exist, namely, by containing as constituents objects that fail 
to exist. But I take it this is the only plausible way in which 
states of affairs and possible worlds might have only contin- 
gent existence. Consequently, I will assume henceforth that 
states of affairs and possible worlds do have necessary exis- 
tence. Among other things, it follows that the defense of S5 
given in section four is unproblematic. 

Having argued that states of affairs have necessary exis- 
tence, we might still wonder why that is the case. Why should 
states of affairs that are in some sense built out of contingent 
objects, nevertheless have necessary existence? Some light can 
be thrown on this by considering some much more general 
questions. Philosophers have been perennially divided on their 
view of the status of abstract entities. In one camp we have 
the nominalists who eschew talk of abstract entities on the 
grounds that we do not perceive numbers, sets, etc., and hence 
have no way of knowing anything about them. The nominalist 
concludes that talk about abstract entities must be nonsensical. 
In the other camp we have the Platonists who insist that we 
all know many truths about abstract entities (e.g., we know 
that there is a number between 1 and 3), and hence we must 
have some way of "perceiving" facts about abstract enti- 
t i e s .  If forced to classify myself, I would call myself a 
"nominalistic Platonist". It seems to me that both the nom- 
inalists and the Platonists have things partly right. The Pla- 
tonist is surely right that we have knowledge about abstract 
entities. It cannot reasonably be denied, for example, that we 
know that there is a number between 1 and 3 .  This has led 
some Platonists to talk about a mystical "perception' of uni- 
versals, but the nominalist is surely right that we do not per- 

44 No doubt this oversimplifies the actual dispute, but so be it. 
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ceive abstract entities. As we do have knowledge of abstract 
entities and it is not derived from perception of abstract en- 
tities, it must be derived from knowledge we have that is not 
of abstract entities. Accordingly, there must be logical con- 
nections between propositions about abstract entities and other 
propositions enabling knowledge of the former to be based 
upon knowledge of the latter. The search for such logical con- 
nections is apt to seem hopeless until it is realized that among 
our knowledge of nonabstract entities is modal knowledge. 
For example, I know not only that all bachelors are unmarried 
but also that it is necessary that all bachelors are unmarried. 
The latter can be construed as knowledge about a proposition, 
but surely it can also be construed as knowledge about bach- 
elors. One can learn that it is necessary that all bachelors are 
unmarried before one learns anything about propo~i t ions .~~ Such 
modal knowledge provides the grounds upon which we come 
to have knowledge of abstract entities. For example, we come 
to know that there is a number between 1 and 3 by learning 
modal truths of the form '"It is possible for it to be the case 
that there is more than one F but there are less than three F's', 
where the latter is a proposition of the form 

0[(3x)(3y)(Fx & Fy & x + y) & -(3x)(3y)(3z)(Fx & Fy 
& F z & x # y & x # z & y # z ) ] .  

Such logical connections do not "tell us what numbers are" 
(it is unclear what could possibly count as doing that), but 
they do tell us what it is for there to be numbers of various 
sorts. 

I am convinced on the basis of epistemological considera- 
tions of the preceding sort that all talk of abstract entities must 
be analyzable in terms of (possibly modal) talk of nonabstract 
entities.46 Given such analyses, some philosophers will want 
to conclude that we have shown that there really are no ab- 

45 For an epistemological investigation of such knowledge, see Chapter 

Ten of Pollock [1974]. 
46 Such analyses might not be truth-condition analyses. They might instead 

proceed in terms of justification conditions, as in Pollock [1974]. 
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stract entities-we will have "analyzed them away". This will 
be accompanied by grandiose talk of Occam's Razor and the 
Principle of Parsimony. But such a conclusion is ridiculous. 
The analyses will tell us what it means to say that there are 
numbers and other kinds of abstract entities, and so rather than 
showing that there are none, the analyses will explain why it 
is true that there are. It is just true that there are numbers 
(e.g., there is a number between 1 and 3), and no amount of 
logical analysis is going to make that fact go away. All the 
analyses can do is explain why the fact is a fact. 

My thesis is then that given rather liberal resources for anal- 
ysis, all talk of abstract entities must be analyzable in terms 
of talk of nonabstract entities. This is a highly programmatic 
thesis and as such should be viewed with considerable sus- 
picion. One case in which the program can be carried out with 
relative ease, however, is the case of states of affairs and pos- 
sible worlds,47 and the nature of the analysis throws consid- 
erable light on why states of affairs have necessary existence. 

Recall that elementary states of affairs are those of the form 
[x i , . .  . ,xna] where x,,. . .,xn are objects and a is a concept, and 
also those of the form [0lip] where ip is a proposition. Cor- 
responding to [x,,. .. ,xna]  is the ordered pair ((x,,. . . ,xn),a), 
and corresponding to [Olip] is the ordered pair (0,ip). In gen- 
eral, taking a zero-tuple to be the empty set, a zero-place re- 
lation to be a proposition, and a nontransient concept to be 
one that if ever exemplified by an object is always exemplified 
by that object, let us define a proto-state to be an ordered pair 
(a,a) where for some n <. 0, a is an n-tuple and a is an n- 
place nontransient concept. It should be emphasized that I am 
not suggesting that [via] is the same thing as (u,a}. All I am 
doing is constructing set-theoretic entities corresponding to el- 
ementary states of affairs. Let us say that (u,a)  obtains iff IT 

exemplifies a (or if a = 0 ,  iff the proposition a is true). 
Proto-states correspond to elementary states of affairs, but 

47 This will not analyze talk of states of affairs all the way down to talk 
of nonabstract entities. It proceeds in terms of properties and propositions, 
the assumption being that some further analysis is possible for the latter. 
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nonelementary states of affairs can be constructed by forming 
(possibly infinite) disjunctions, conjunctions, negations, etc. 
of elementary states of affairs. Set-theoretic surrogates for these 
complex states of affairs can be constructed by proceeding as 
follows. We first define: 

(8.2) If ( u p )  is a proto-state then -(@,a) = (u,-a). 

Then we let sets of proto-states represent conjunctions of proto- 
states, and we call such sets 'meso-states': 

(8.3) S is a mesa-state iff S is a set of proto-states. S obtains 
iff all of its members obtain. 

Finally, we let sets of meso-states represent disjunctions of 
meso-states, and we call these 'ur-states': 

(8.4) S is an ur-state iff S is a set of meso-states. S obtains 
iff at least one of its members obtains. 

This construction guarantees the existence of conjunctions, 
disjunctions, and negations of ur-states. If S and S* are ur- 
states, SvS* is SuS*. More generally, if X is a set of ur-states 
then VX = UX. Negations are defined as follows. Where X 
is a meso-state, let Neg(X) = {-S~SEX}. Then if S is an ur- 
state: 

(8.5) -5' = {Neg(X)[ X is a set consisting of one element 
of each member of S}. 

The rationale for this definition is that if X is a set of sets of 
states of affairs, then: 

-V{AYI YEX} = V{Neg(~)l Y is a set consisting of one 
element of each member of X}. 

For example: 
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We then obtain other truth functions in the normal way: for 
example S&S* = -(-Sv-S*). More generally, if X is a set 
of ur-states then AX = -V{-51 SEX}. 

We define the containment relation between proto-, meso-, 
or ur-states in the expected way: 

(8.6) S < S* iff S and S* are necessarily such that if S* 
obtains then S obtains. 

Two ur-states are equivalent iff each contains the other. I will 
use '<^' to symbolize equivalence between ur-states. 

We can also talk about an ur-state being equivalent to a 
proto-state or meso-state as follows: 

(8.7) If S is a proto-state, meso-state, or ur-state, and S* is 
a proto-state, meso-state, or ur-state, then S is equiv- 
alent to S* iff S and S* are necessarily such that one 
obtains iff the other obtains. 

This has the result, for example, that if S is a proto-state then 
both {S} and {{S}} are equivalent to S, This correspondence 
between proto-states, meso-states, and ur-states is not unique, 
however. S is also equivalent to {{S,S*} ,{S, -S*}}. 

We can define meso-worlds and ur-worlds on strict analogy 
to our earlier definition of 'possible world': 

(8.8) w is a meso-world (or ur-world) iff w is a meso-state 
(or ur-state) that is possibly such that it obtains and 
for every meso-state (or ur-state) S, if (w&S) is pos- 
sibly such that it obtains then S < w. 

This has the result that if w is a meso-world then {w} is an 
equivalent ur-world. Not every ur-world is a unit set of a meso- 
world, but it is true that every ur-world is equivalent to a meso- 
world.48 We can also define: 

(8.9) If S is an ur-state and w is an ur-world, S obtains at 
w iff S < w. 

48 This construction of ur-states and ur-worlds improves upon the con- 
struction given in Pollock [ I  9841. 
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Ur-states and ur-worlds can be regarded as set-theoretic sur- 
rogates for states of affairs and possible worlds, in the fol- 
lowing sense: 

(8.10) If S is a state of affairs and s is an ur-state, s is a 
surrogate of S iff S and s are necessarily such that 
one obtains iff the other obtains. 

My suggestion is now that we can analyze talk of states of 
affairs and possible worlds in terms of ur-states and ur-worlds. 
The simplest proposal for such an analysis would be one that 
translates directly from talk of states of affairs to talk of ur- 
states, replacing quantification over states of affairs by quan- 
tification over ur-states, replacing talk of states of affairs ob- 
taining by talk of their surrogates obtaining, and so on. Be- 
cause a state of affairs can have more than one surrogate, identity 
between states of affairs must be translated by the equivalence 
relation 'H' rather than by identity between ur-states. It should 
be emphasized that this analysis does not identify states of 
affairs with ur-states. Rather, it proposes to analyze talk of 
the former in terms of talk of the latter. The analysis would 
not (and would not be intended to) tell us "what states of 
affairs are". That strikes me as a nonsensical enterprise. Rather, 
this would be an analysis of talk of states of affairs in the same 
sense as the analysis of number theory in terms of higher-order 
logic is an analysis of talk about numbers. The analysis would 
tell us what it is for there to be states of affairs of certain sorts, 
but not what states of affairs are. 

In Pollock [I9841 this simple analysis that translates talk of 
states of affairs directly into talk of ur-states was called the 
existentialist analysis because I thought it made existentialism 
true. It appears to make existentialism true because ur-states 
really do contain objects as literal constituents in a set-theo- 
retic sense and hence do not exist when those objects fail to 
exist. But the analysis does not live up to its initial promise. 
It leads us directly into problems associated with the above 
proof that existentialism is inconsistent. Let S be the ur-state 
Socrates' not existing, and let w be an ur-world containing S. 
If the existentialist analysis really made existentialism true, it 
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would follow that if w obtained it would not exist, so there 
would exist an ur-world w* (which is not now an ur-world) 
that would both exist and obtain. Our earlier argument shows 
that S would obtain at w*. But this implies that S is contained 
in w*. Consequently, existentialism would require that w* not 
exist if w obtained. That is where the contradiction arises. The 
proposed "existentialist analysis" does not actually have the 
consequence that w* would not exist, so it does not make ex- 
istentialism true. Of course, it could not have this conse- 
quence, because if it did it would be inconsistent. 

The upshot of this is that the existentialist analysis is not a 
satisfactory analysis on any count. It cannot be possible to 
give an analysis of talk of states of affairs in terms of ur-states 
in such a way as to make existentialism true, because exis- 
tentialism is inconsistent. But the existentialist analysis is not 
satisfactory as a nonexistentialist analysis either, because it 
endows states of affairs with highly contingent existence. Al- 
though it is not defensible in its own right, the existentialist 
analysis suggests an alternative analysis having the result that 
states of affairs and possible worlds exist necessarily. This 
analysis differs from the existentialist analysis primarily by 
translating existential quantifiers over states of affairs in terms 
of possibilistic quantifiers over ur-states. Like the existentialist 
analysis, it translates '=' as 'H'. According to this analysis, 
to say that there is a state of affairs satisfying a certain con- 
dition is just to say that it is possible for there to be an ur- 
state that actually satisfies the corresponding condition (the 
corresponding condition being what we get when we translate 
the condition regarding states of affairs into talk of ur-states). 
This has the effect that all existential claims about states of 
affairs are either necessarily true or necessarily false, and hence - 
states of affairs do not have contingent existence. For exam- 
ple, rx's being a exists1 is transcribed as "(3S)S = [x\aI1 and 
then analyzed as "(3s) S ^> {xla}^. The latter is, by definition: 

(8.11) O(3S)A S ^> {xci}. 

(8.1 1) can be proven as follows. {x\a} exists, so: 

(8.12) O({x\a} exists). 



111. Possible Worlds 

Then by S5 

(8.13) nO({xIa} exists). 

The following is a necessary truth: 

(8.14) {xla} obtains iff {xla} obtains, 

so it follows from S5 that it is necessarily necessary: 

(8.15) DD({xla} obtains iff {xla} obtains), 

Consequently: 

Thus, by S5, (8.13) is equivalent to: 

(8.18) DiO[{xla} exists & Al({xla} <  ̂{x\a})] 

This entails: 

In other words, (8.11) is a necessary truth, so [xla] exists nec- 
essarily. Similar reasoning leads us to the general principle 
that states of affairs have necessary existence: 

(8.20) D(VS)lJ[S is a state of affairs -r D(3S*) S* = S]. 

The point of this lengthy digression on the analysis of talk 
about states of affairs has been to explain why states of affairs 
and possible worlds have necessary existence. This cannot be 
regarded as a proof that they do, only an explanation for why 
they do, because in order to show that the analysis yields the 
result that states of affairs have necessary existence, we have 
had to assume S5. Our earlier defense of S5, however, turned 
upon states of affairs having necessary existence. 

There is a further point to our digression. Our defense of 
quantified S5 (i.e., KS5) made the additional assumption that 
properties have necessary existence. That is demonstrably false 
given the construction of properties in section five. Nonqual- 
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itative properties were defined to be ordered pairs (P,cr) where 
P is a qualitative property and cr is an assignment of objects 
to some of the argument places of P .  Such an ordered pair 
will fail to exist if any of the objects in the assignment fail to 
exist. At this point, it could reasonably be protested, however, 
that properties are not really identical to such ordered pairs; 
rather, the ordered pairs are set-theoretic surrogates for the 
properties in much the same sense as ur-states are surrogates 
for states of affairs. The analysis of talk of states of affairs in 
terms of talk of ur-states makes this plausible, because a sim- 
ilar analysis can be given for talk of properties. Suppose we 
call the ordered pairs (P,cr) 'property surrogates'. Then the 
analysis will translate existential quantification over properties 
into possibilistic quantification over property surrogates. Just 
as for states of affairs, the result will be that properties have 
necessary existence. Furthermore, insofar as the analysis is 
plausible (and I think it is), this constitutes an argument that 
properties have necessary existence and not just an explana- 
tion for why they might. This is because we need only S5- 
not KS5-to show that this analysis endows properties with 
necessary existence, and the justification of S5 does not pre- 
suppose that properties have necessary existence. On this ba- 
sis, I will henceforth assume that properties do have necessary 
existence and that the principles of KS5 are valid. 
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If we confine our attention to modal logic, possible worlds 
do not live up to their initial promise. They do not provide a 
vehicle for the analysis of necessity, because a workable no- 
tion of a possible world presupposes logical necessity. Thus, 
despite the high esteem in which they are held, one might 
begin to wonder whether possible worlds are good for any- 
thing in philosophical logic. I think that they are of impor- 
tance, but their primary importance lies outside modal logic. 
The three areas in which I have found them to be of most use 
are the analysis of counterfactual conditionals, the analysis 
of causation, and the theory of probability. The last area is 
beyond the scope of the present book, but the usefulness of 
possible worlds can be amply illustrated by looking to coun- 
terfactuals and causation. Counterfactuals will be investigated 
in this chapter, and causation in the next. 

The original idea of analyzing counterfactuals in terms of 
possible worlds is attributable to Robert Stalnaker [1968]. The 
idea was developed further by David Lewis ([I9731 and [1979]), 
and his theory is unquestionably the most popular contem- 
porary theory of counterfactuals. The analysis I will defend 
here differs importantly from both of those theories. 

1. Preliminaries 

There are several different kinds of conditionals expressible 
in English that can be regarded as "subjunctive".' The con- 
ditional normally studied in investigations of counterfactuals 

' For a general discussion of these conditionals, see Pollock [1975], and 
Chapter Two of Pollock [1976]. 
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is what I have called the simple subjunctive ~onditional.~ This 
will be symbolized as rP  > Q1. This conditional has the char- 
acteristic that it can be true for either of two reasons. First, 
(P > Q) can be true because there is a connection between P 
and Q such that P's being true in some sense "requires" Q 
to be true. Second, (P > Q) can be true because Q is already 
true and P's being true would not interfere with this. Many 
objections to the existing theories of counterfactuals turn upon 
confusing the simple subjunctive conditional with the neces- 
sitation conditional (P  Ã Q), which is true just in case P's 
being true "requires" Q to be true. In many ways, the ne- 
cessitation conditional is of more interest to philosophers than 
the simple subjunctive. But in logical investigations there is a 
good reason for focusing our attention on the simple subjunc- 
tive rather than the necessitation conditional, namely, the sim- 
ple subjunctive has nice logical properties, while the neces- 
sitation conditional satisfies virtually no logical laws. For 
example, even such an elementary law as 

if P >> Q is true and Q entails R then P >> R is true 

fails for necessitation conditionals. To illustrate, it may be that 
pushing the button necessitates that the doorbell rings. That 
the doorbell rings entails that the doorbell exists. But it is false 
that pushing the doorbell necessitates that the doorbell exists; 
i.e., pushing the button in no way "requires" that the doorbell 
exist. So if we set about investigating the logic of necessitation 
conditionals, we will find that there isn't much of o n e .  Fur- 
thermore, I argued in Pollock [I9761 that the necessitation 
conditional can be defined in terms of the simple subjunctive. 
rP >> Q1 is definable as 

Consequently, a theory of simple subjunctives will automat- 

In particular, this is the conditional studied in Stalnaker [1968], Lewis 
[1973], and Pollock [1976]. 

For more on this, see Pollock [1976], 33-38. 

I l l  
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ically give us a theory of necessitation conditionals, and hence 
nothing is lost by focusing on simple subjunctives. 

Two other conditionals of note are the 'might be' condi- 
tional and the 'even i f  conditional. I follow Lewis [I9731 in 
taking (at least some uses of) '"it might be true that Q if it 
were true that P1 to be expressible as r-(P > - Q ) ~ . ~  For 
example, suppose we have two lights A and B ,  both off, and 
these are controlled by switches A and B respectively. Then 
it is true that light A might be on if at least one of the switches 
were closed, because it is false that if at least one of the switches 
were closed then light A would be off. One of the lights would 
be on, but it is indeterminate which, so each might be on. 

I argued in Pollock [I9761 that rQ would (still) be true even 
if P were true' can be expressed as ^Q & (P > Q)'. For 
example, light A would still be off even if switch B were closed, 
because light A is off and would be off if switch B were c10sed.~ 
Given the logic SS of simple subjunctive conditionals (which 
will be defended below), it follows that the simple subjunctive 
is a disjunction of 'even if  and necessitation conditionals, i.e., 
P > Q1 is equivalent to ^(P >> Q) v [Q & (P > Q)]'.~ 
This is in accordance with the intuitive explanation of simple 
subjunctives I gave in the beginning of this section. 

'>' is normally regarded as an operator that when applied 
to propositions yields a conditional proposition and when ap- 
plied to statements yields a conditional statement. It is con- 
venient, however, to regard it more generally as an operator 
on states of affairs. If P and Q are states of affairs, (P > Q) 
will be that state of affairs that obtains iff Q would obtain if 
P were to obtain. Given an account of '>' for states of affairs, 
we can generate an account of the truth conditions for simple 
subjunctive propositions and statements as follows: 

If P and Q are either both propositions or both statements, 
then (P > Q) is true iff ([0lP] > [01Q]) obtains. 

For a dissenting opinion, see Stalnaker [1981]. 
For a dissenting opinion, see Bennett [ 19831. 
This is proven in Pollock [1976], 42. 
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If (P > Q) obtains at a world w, I will say that Q is a coun- 
terfactual consequence of P at w. When w is the actual world, 
I will drop the reference to w. 

Entailment is ordinarily understood to be a relation between 
propositions or statements, but one can also take it to be a 
relation between states of affairs. To say that one state of af- 
fairs P entails another Q is just to say that, necessarily, if P 
obtained then Q would obtain, i.e., P C Q. To say that a set 
X of states of affairs entails Q is just to say that AX entails 
Q. 

For the purpose of writing logical principles regarding states 
of affairs, we must write things like 

If (P&Q) obtains then P obtains. 

We can streamline our notation by systematically abbreviating 
P obtains1 as rP1. This enables us to write the preceding 
principle more simply as 

I will adopt this abbreviation throughout. 
Given these preliminaries, I will present my analysis of 

counterfactuals in section two, and I will contrast it with David 
Lewis's familiar analysis in section three. 

2. A Possible Worlds Analysis 

A simple justification can be given for the general "possible 
worlds approach" to the analysis of counterfactuals. This turns 
upon the generalized consequence principle (GCP) according 
to which anything entailed by the set of counterfactual con- 
sequences of P is itself a counterfactual consequence of P :  

(2.1) If X if a set of states of affairs each member of which 
would obtain if P obtained, and X entails Q, then 
(P > Q) obtains. 

I take GCP to be an intuitively obvious fact about counter- 
factuals. Now let us define: 
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(2.2) Mw(P) = {w* w* is a world at which all of the coun- 
terfactual consequences of P at w obtain}. 

Given GCP, the members of Mw(P) are the worlds that (from 
the point of view of w) might be actual if P were to obtain: 

(2.3) w*â‚¬Mw( iff -(P > -w*) obtains at w. 

Proof: If -(P > -w*) does not obtain at w, then 
(P > -w*) does obtain at w. Thus, -w* is a counterfactual 
consequence of P at w, but of course -w* does not ob- 
tain at w*, so w* @ M,"(P). Conversely, suppose w* $ Mw(P). 
Then there is some Q such that (P > Q) obtains at w but 
Q does not obtain at w*. If Q does not obtain at w*, then 
w* entails -Q, and hence Q entails -w*. As (P > Q) ob- 
tains at w and Q entails -w*, it follows from GCP that 
(P > -w*) obtains at w, and hence -(P > -w*) does not 
obtain at w. 

We will refer to the members of Mw(P) more briefly as 'the 
nearest P-worlds'. Recalling that IlQIl is the set of all Q-worlds, 
i.e., the set of all possible worlds at which Q obtains, the 
following theorem is easily proven: 

(2.4) If GCP holds, then for any world w, (P > Q) obtains 
at w iff Q is true at every nearest P-world to w, i.e., 
iff MJP) c 11~11.~ 

Proof: Suppose (P > Q) obtains at w. Then by the def- 
inition of M,  if w*â‚¬Mw( then Q obtains at w? con- 
versely, suppose (P > Q) does not obtain at w. Then by 
GCP, Q is not entailed by the counterfactual consequences 
of P at w, so there is a world w* at which Q does not obtain 
but at which all of the counterfactual consequences of P at 
w do obtain. The latter means that w*â‚¬Mw(P so M J P )  
Â IlQll. 

By virtue of this theorem, if we can provide an alternative 
definition of M that does not proceed in terms of counterfac- 

' This theorem was first proven in Pollock [1976a] 
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tuals, it will provide us with an analysis of counterfactuals. 
Such will be the strategy of the present investigation. 

Most recent theories of counterfactuals are based upon a 
common idea, which Stalnaker attributes indirectly to Frank 
~amsey. '  This is that the nearest P-worlds are worlds resulting 
from minimally altering the actual world in order to accom- 
modate P's being true. The novelty in a particular theory lies 
in how it makes precise this notion of minimal alteration. Stal- 
naker [I9681 and Lewis [I9731 attempted to analyze it in terms 
of comparative similarity, while I tried (in Pollock [1976]) to 
do it in terms of minimal changes. I will say something in the 
next section about the difference between these approaches. 
The present analysis also proceeds in terms of minimal changes, 
but in a somewhat different fashion than in Pollock [1976]. 

Let us begin by constructing a precise way of talking about 
changes. Where X and Y are sets, two kinds of changes are 
involved in going from X to Y: we must add to X all objects 
in (Y-X), and we must remove from X all objects in (X-Y). 
We can represent this change by the indexed difference: 

(2.5) YAX = [(Y-X) x {l}]u[(X-Y) x {O}] . 
The change in going from X to Y is represented in YAX by 
pairing the objects that must be added with the index 1 and 
pairing the objects that must be deleted with the index 0. Rep- 
resenting changes in this way, one change is included in an- 
other just in case the first is a subset of the second. 

Changes are changes to something. The most natural con- 
strual of talk of the change involved in going from one world 
to another is that the change is a change in the set of states 
of affairs obtaining at the first world. In other words, letting 
w ]  be the set of all states of affairs obtaining at a world w, 
the change in going from w to w* is [w*]A[w]. However, this 
natural construal of change is inadequate for our present pur- 
poses, because it leads directly to the conclusion that the (non- 
empty) change in going from w to one world w* can never be 
properly contained in the change in going from w to another 
world w**. To see this, suppose [w*]A[w] C [w**]A[w]. Then 

See Stalnaker [1968], 101. 
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there is a state of affairs P obtaining at w that does not obtain 
at w*, and by virtue of the inclusion of changes, P does not 
obtain at w** either. As the inclusion is proper, there is also 
a Q obtaining at both w and w* that does not obtain at w**. 
But then the biconditional (P  <-* Q) obtains at w and w** but 
not at w*, which contradicts the assumption that [w*]A[w] C 
[w**]A[w]. 

It is clear intuitively what has gone wrong in the preceding 
example. In talking about the inclusion of changes, we should 
not look at logical compounds like (P <-> Q). We should just 
look at states of affairs that are logically simple. To make 
sense of this we must take the notion of logical structure se- 
riously, agreeing that some concepts literally are conjunc- 
tions, disjunctions, etc., as opposed to merely being equiva- 
lent to conjunctions, disjunctions, etc. Those that are not logical 
compounds will be called 'simple'. A state of affairs whose 
obtaining consists of an object (or n-tuple of objects) exem- 
plifying a simple nontransient concept or the negation of a 
simple nontransient concept will be called a simple state of 
affairs. This is to be understood in such a way that a simple 
state of affairs cannot obtain at a world unless the objects in- 
volved in it exist at that world. If a is a simple nontransient 
concept, the internal negation of [x\a] is [XI-a], and the in- 
ternal negation of [x-a] is [ x \ a ] .  Thus, the internal negations 
of simple states of affairs are themselves simple states of af- 
fairs. If P is a simple state of affairs, let -P be its internal 
negation. The difference between the internal negation -P and 
the ordinary negation -P is a matter of "existential import". 
Let (w) be the set of all simple states of affairs obtaining at 
w. I assume that the set of simple states of affairs obtaining 
at a world uniquely determines what other nonsubjunctive states 
of affairs obtain at that world. My proposal is that Ramsey's 
basic idea is to be explicated in terms of making minimal 
changes to (w) subject to two constraints that I will now discuss. 

2.1 Legal Conservatism 

The first constraint is that physical laws must be kept the 
same insofar as possible. Let us say that P is counterlegal at 
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w iff P cannot obtain at any world having the same laws as 
w. The constraint is then that if P is not counterlegal at w then 
the nearest P-worlds to w must have the same laws as w ,  and 
if P is counterlegal at w then the laws in the nearest P-worlds 
must be changed as little as possible from the laws in w. I 
think that most philosophers will accept this "legal conserva- 
tism", although David Lewis is a notable exception. Despite 
Lewis's dissension, I am inclined to regard it as obviously true 
that this constraint must be satisfied in the construction of nearest 
P-worlds. It is generally supposed that one of the most im- 
portant features of laws is that they "support their counter- 
factuals". The most obvious construal of this is the instantia- 
tion principle: whenever P is not counterlegal and (P  > Q )  
results from direct instantiation in a law, then it is true. This 
requires that the nearest P-worlds contain no violations of the 
laws of w. The only simple way to ensure this result semanti- 
cally is to suppose that the nearest P-worlds to w retain the 
same laws as w. 

David Lewis ([I9731 and [1979]) has argued against the in- 
stantiation principle, and so derivatively against legal con- 
servatism. His contention in Lewis [I9791 is, basically, that 
the instantiation principle fails for "backwards-directed con- 
ditionals"-counterfactuals to the effect that if something had 
been the case at a certain time, then something else that was 
not true would have been true at an earlier time. Lewis thinks 
that, standardly interpreted, such conditionals are always false." 
I cannot concur with this claim. Lewis is certainly correct that 
it is hard to find true backwards-directed conditionals, but one 
case in which such conditionals seem clearly true is when they 
result directly from instantiation in physical laws. Consider, 
for example, a match that was struck and then lit. We cannot 
conclude that if it had not lit it would not have been struck. 
If it had not lit, something else might have gone wrong besides 
its being struck. But suppose C comprises a complete list of 
conditions under which, according to true physical laws, a struck 

See particularly Lewis [1979]. 
lo Except for those dealing with a short "transition period". 
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match lights. There is no obstacle at all to our concluding that 
if the match had not lit, then either it would not have been 
struck or else conditions C would not have obtained. This con- 
ditional is as clearly true as counterfactuals ever get. It is pre- 
cisely because it results directly from instantiation in a law 
that it is so clearly true. I know of no other plausible argument 
against legal conservatism, and there appear to be strong in- 
tuitions in its favor, so I embrace it in the analysis. 

To formulate the constraint of legal conservatism precisely, 
we must say more about physical laws. Physical laws are as- 
sumed to be subjunctive generalizations. The reader is re- 
ferred to Pollock 119761 for an account of this notion. Most 
of the details are not relevant to the present account. In order 
to deal with counterlegal conditionals I do assume, however, 
that there is a distinction between basic subjunctive general- 
izations, which are projectible in the sense of being directly 
confirmable by their instances, and others that are only con- 
firmable by being entailed by basic subjunctive generaliza- 
tions." Let Lw be the set of basic subjunctive generalizations 
holding at w. Where X is a set of states of affairs and Q is a 
state of affairs, let us say that X nomically implies Q at w 
(symbolized: '"X => Q') iff XuLW entails Q. 

w 
Legal conservatism is now the requirement that in con- 

structing nearest P-worlds we make minimal changes to the 
laws in order to accommodate P's being true. Let M ~ ( P )  be 
the set of worlds whose laws are thus minimally changed: 

(2.6) M ~ P )  = {w*l w * â ‚ ¬ ~ ~ P  and there is no w** in 1 1 ~ 1 1  such 
that Lw*.ALw C Lw.ALJ}. 

Legal conservatism requires: 

(2.7) M J P )  C M'JP). 

2.2 Undercutting 

Legal conservatism is not particularly novel, having been 
endorsed at least implicitly by most authors. The principal 

" The details of this notion are spelled out in Pollock [1976], Chapter 
Three. 
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novelty of the present analysis concerns the logical phenom- 
enon of "undercutting" . I 2  Consider a concrete case consisting 
of an open switch and a light wired in series with a battery. 
Let us suppose it is a law that in such a circuit if the switch 
is closed (S) and the circuit is intact (I) then shortly thereafter 
the light will come on (L): (S&I) =^> L. We want to say 

w 
that if the switch were closed then the light would come on: 
S > L. Legal conservatism requires that (-1 vL) be true at all 
nearest 5-worlds, and the requirement that we minimally change 
(w) in order to accommodate S requires that in any nearest S- 
world, either -I is true and L is false or L is true and -I is 
false. What justifies us in rejecting the former alternative and 
concluding S > L rather than S > -I? This might reasonably 
be called "the central problem" in the analysis of counter- 
factuals. The solution to this problem, which I proposed in 
Pollock [I9761 and to which I still adhere, is this. At least in 
deterministic worlds, both I and -L have "historical anteced- 
ents"-sets of simple states of affairs that obtain earlier and 
that nomically imply them. The historical antecedents of I de- 
scribe the way the circuit came to have the structure it does. 
These historical antecedents (we can suppose) have nothing in 
particular to do with the switch's being open. The historical 
antecedents of -L are those earlier states of affairs that have 
brought it about that the light is not on. These historical an- 
tecedents must include either the switch's not being closed or 
else some earlier states of affairs that are themselves historical 
antecedents of the switch's not being closed. Consequently, S 
nomically implies the falsity of the historical antecedents of 
-L. This is what is meant by saying that S undercuts -L. 
On the other hand, S does not undercut I .  My contention is 
that it is this asymmetry that is responsible for our affirming 
S > L and not S > -L. 

This basic idea is the same as that of Pollock [1976], al- 
though the way it will now be developed is quite different. 
First, we must construct a precise definition of undercutting. 

' This also provided the intuitive rationale for the analysis of Pollock 
[1976], although there I attempted to capture it differently. 
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We begin by noting that simple states of affairs are dated- 
they ascribe nontransient concepts to objects, which is to 
say that they ascribe concepts to objects at specific times. We 
must be careful just what we assume about temporal rela- 
tions. Whether a counterfactual obtains cannot be relative to a 
frame of reference. This is an absolute matter independent of 
frames of reference. Accordingly, the temporal relations in- 
volved in the analysis of counterfactuals must also be ab- 
solute temporal relations and not relative to frames of ref- 
erence. I will symbolize rP is absolutely earlier than Q1 
as rP < Q1, and rP is absolutely simultaneous with Q1 
as rP -s Q1. I will leave open how these notions are to be 
defined. In special relativity, ^P < Q1 might be taken to re- 
quire (in part) that there is a path of light from P to Q, and 
rP -s Q1 would then require that P and Q occur at the same 
location. We must make some minimal assumptions about the 
logical properties of these temporal relations. It would be as- 
sumed classically that '<' simple orders the states of affairs 
in its field, but that is incompatible with special relativity. I 
will assume only the following: 

(2.8) If P < Q and Q < R, then P < R. 

(2.9) If P s Q and Q < R ,  then P < R. 

(2.10) If P < Q and Q -a R ,  then P < R. 

Additional assumptions might be defensible, but we will not 
need them. 

We have taken '<' to symbolize the "earlier than" relation 
between simple states of affairs. It is also convenient to define 
the following, where X is a set of simple states of affairs and 
Q is an individual simple state of affairs: 

(2.11) X < Q iff every member of X is earlier than Q. 

We can define the notion of an historical antecedent as follows: 

(2.12) X HAw P iff X is a set of simple states of affairs 
obtaining at w and X < P and X => P. 

w 
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We normally suppose that historical antecedents of states of 
affairs have their own historical antecedents, and so on. By 
tracing out this sequence of historical antecedents as far as we 
can, stopping only if we come to a state of affairs without 
historical antecedents, we construct a "causal history" for the 
state of affairs. In cases of causal overdetermination, a state 
of affairs will have several merging causal histories. To say 
that P undercuts Q is to say, roughly, that P nomically implies 
the falsity of every causal history of Q. The elements of a 
causal history of Q constitute what I will call a 'nomic pyramid': 

(2.13) A is a nomic pyramid of w iff A is a set of simple 
states of affairs obtaining at w and: 
(1) for each P in A, if P has historical antecedents 
in w then (3X)[X C A and X HAw PI; 
(2) if u is an w-sequence of elements of A such that 
(Vnâ‚¬w)(3X) C A and un+, EX and X HAw un and 
-((X-{mn+J) HAw un)l and (3X)(VnEw) X HAw u,,, 
then (3X)[X C A and (VnGw) X HAw an].  

A nomic pyramid is supposed to contain an entire causal his- 
tory of each of its members. Condition (1) requires that in 
tracing out causal histories we do not stop unless we reach a 
state of affairs without a causal history. Condition (2) is in- 
cluded to avoid a complex way in which nornic pyramids might 
otherwise fail to contain complete causal histories. We might 
have a causal chain of states of affairs, each causing all of the 
later ones, where the chain is temporally dense in the sense 
that between any two members of the chain is another member 
of the chain. For example, think of a ball rolling down an 
inclined plane. A causal history of any of these states of affairs 
must include all of the earlier ones in the chain. But now let 
us select an arbitrary member of this chain, and let A be the 
set of all subsequent members of the chain. Then every mem- 
ber of A has an historical antecedent in A,  i.e., condition (1) 
is satisfied. But A does not contain a complete causal history. 
To ensure that a nornic pyramid does contain a complete causal 
history, we must require that given any temporally descending 
sequence of states of affairs in the pyramid, if each member 
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of the sequence is part of the historical antecedents of the tem- 
porally later members of the sequence and there is something 
that is an historical antecedent of all of the members of the 
sequence, then some such historical antecedent is included in 
the nomic pyramid. This is what condition (2) requires. 

The simplest way in which P can undercut Q is by being 
nomically incompatible with every nomic pyramid containing 
Q .  This led me in Pollock [I9811 to define: 

P undercuts Q at w iff Qâ‚¬( and (VA)(if A is a nomic 
pyramid of w and Qâ‚ then A => -P). 

w 

But this definition of undercutting must be broadened. For 
example, suppose P is nomically incompatible with the con- 
junction (QM&S) of simple states of affairs, and incompat- 
ible with the combined historical antecedents of Q and R with- 
out being incompatible with the historical antecedents of either 
Q or R by themselves. Under these circumstances, we would 
judge that S would still obtain even if P obtained, but either 
Q or R might fail to obtain. To illustrate, consider a system 
of three lights A ,  B ,  and C. Light C is perpetually on. Lights 
A and B are controlled by switches A and B, both of which 
are actually closed. Clearly, if switches A and B were not both 
closed, light C would still be on, but either of lights A and B 
might be off. To accommodate the latter we must define un- 
dercutting in terms of minimal sets of states of affairs whose 
joint historical antecedents are nomically incompatible with P :  

(2.14) P undercuts Q iff (3F)[Qâ‚ and F is a minimal set 
of simple states of affairs such that (VA)(if A is a 
nomic pyramid of w and F C A then P 3 -AA)]. 

w 

Let UJP) be the set of simple states of affairs undercut by P 
at w together with the internal negations of those states of 
affairs. 

Now consider how undercutting imposes a constraint on the 
construction of nearest P-worlds. Our original observation was 
that when P ^> -(Q&R) where Q and R both obtain at w, and 

w 
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P undercuts Q but not R,  then we conclude that P > R obtains 
at w. In other words, if in minimally altering (w )  to accom- 
modate the obtaining of P we must give up one of Q or R,  
we give precedence to the one that is not undercut, preserving 
it in preference to the other. In making minimal changes we 
are not allowed to delete a state of affairs that is not undercut 
in order to preserve one that is undercut. Similarly, we are 
not allowed to add a state of affairs not in Uw(P) in order to 
preserve an undercut state of affairs. Simply put, members of 
(w)-Uw(P) take precedence over undercut states of affairs in 
deciding what to preserve in making minimal changes. Let us 
define: î e 

(2.15) M:(P) = { W * [ / M ~ P )  and there is no w** in 
M m s u c h  that ((w**)-UJP))A((w)-Uw(P)) C 
((w*)-UJP))A((w)-Uw(P))l}. 

M W )  consists of those members of M^(P) that satisfy our 
undercutting constraint, i.e., that result from making minimal 
changes to the non-undercut states of affairs. Thus, that con- 
straint can be formulated precisely as the requirement that: 

Note that this formulation includes the constraint of legal 
conservatism. 

The question arises as to whether there should be a stronger 
constraint related to undercutting. In most ordinary cases in 
which P undercuts Q, we conclude that P > -Q. For ex- 
ample, suppose a button is pushed and the doorbell rings. The 
button's not being pushed undercuts the ringing of the door- 
bell, and so we conclude that if the button had not been pushed, 
the doorbell would not have rung. It is not true completely in 
general that if P undercuts Q then P > -Q obtains, because 
P can both undercut Q and reinstate it in various ways. One 
way P could reinstate Q is by providing new historical ante- 
cedents for it. Or P might undercut both Q and R but entail 
that at least one of Q and R obtains. However, leaving the 
notion of reinstatement a bit vague, it does seem to be true in 
all ordinary cases that if P undercuts Q and does not reinstate 
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it, then P > -Q obtains. Should we add a constraint on the 
construction of nearest P-worlds that will guarantee that this 
is the case? The matter is complicated and I am not sure of 
the answer, but we can throw some light on it by noting that 
this constraint follows from (2.16) for the case of deterministic 
worlds. Let us say that a simple state of affairs is grounded 
just in case it has arbitrarily early historical antecedents: 

(2.17) Q is grounded in w iff Q â ‚ ¬ (  and (VP)(if P â ‚ ¬ (  
then (3X)[X  < P and X HA&]). 

Then let us say that a world is weakly deterministic just in 
case every simple state of affairs obtaining in it is grounded. 
A world could be weakly deterministic "by accident". That 
is, it could happen that all simple states of affairs in w have 
arbitrarily early historical antecedents but that the laws of w 
do not require that to be the case. Accordingly, let us define: 

(2.18) w is deterministic iff every world with the same laws 
as w is weakly deterministic. 

Now suppose that P undercuts Q at w ,  and w is deterministic. 
Then in order to accommodate the obtaining of P ,  we must de- 
lete all of the causal histories of Q .  But then in order to pre- 
serve the laws of w ,  if we are to preserve Q we must add a 
new causal history for Q .  Such an addition, however, would 
violate constraint (2.16) unless P also reinstates Q in some 
way. Thus (2.16) leads automatically to the deletion of Q as 
long as w is deterministic. Hence in the case of deterministic 
worlds, the proposed new constraint is a consequence of (2.16). 
This suggests that (2.16) is the only constraint required for 
deterministic worlds, and hence that: 

(2.19) If w is deterministic then M,,(P) = M ~ P ) .  

This gives us an analysis of counterfactuals in deterministic 
worlds. 

I am reasonably confident of (2.19), but when we turn to 
nondeterministic worlds I find that my intuitions grow less 
clear. Still, some arguments can be given suggesting an anal- 
ysis of counterfactuals applicable both to deterministic and 
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nondeterministic worlds. First, consider whether undercut states 
of affairs must automatically be deleted in nondeterministic 
worlds unless they are reinstated. Suppose that although Q has 
historical antecedents in w ,  w is nondeterministic with respect 
to Q in the sense that there are worlds with the same laws as 
w in which Q obtains without having historical antecedents. 
In this case, if P undercuts Q and does not reinstate Q, should 
it follow that P > -Q obtains? It appears not. If Q can obtain 
without historical antecedents, then removing what historical 
antecedents it has should not require it to not obtain. For ex- 
ample, suppose there are some circumstances C under which 
a proton can emit a photon spontaneously, but under which it 
can also be forced to emit a photon by subjecting it to a strong 
magnetic field. Suppose that in the actual world the proton is 
forced to emit a photon by being subjected to a magnetic field 
under circumstances C. It seems to me that if the proton is 
not being subjected to a magnetic field, it might still have 
emitted a photon. Thus, we are not automatically required to 
delete undercut states of affairs in nondeterministic worlds. 

In the preceding example, it also seems to me that if the 
proton had not been subjected to a magnetic field, then it might 
not have emitted a photon. In other words, although we are 
not automatically required to delete undercut states of affairs, 
we are allowed to do so (unless they are reinstated). If P un- 
dercuts and does not reinstate Q ,  then Q might or might not 
obtain if P obtained. If this is correct, what it means is that 
in constructing nearest P-worlds we are not required to min- 
imize changes to undercut states of affairs. This suggests that, 
in general, the nearest P-worlds are those that result from 
making minimal changes first to the basic laws and then to 
the nonundercut states of affairs. In other words, for all worlds 
w , 

(2.20) MJP) = M:(P). 

(2.20) is the analysis I proposed in Pollock [1981], but Don- 
ald Nute [I9811 and Pave1 Tichy [I9841 quickly presented me 
with counterexamples to it. Their counterexamples both have 
the same structure. Nute observes that in the preceding ex- 



IV. Counterfactuals 

ample, if our proton is in circumstances C but is not being 
subjected to a strong magnetic field and is not emitting a pho- 
ton, we will still want to affirm that if the proton were sub- 
jected to a strong magnetic field then it would emit a photon. 
But that is not forthcoming from (2.20). The proton's being 
subjected to a strong magnetic field undercuts neither its being 
in circumstances C nor its not emitting a photon, and so ac- 
cording to (2.20) there are nearest P-worlds in which it is in 
circumstances C and emits a photon, and there are other near- 
est P-worlds in which it is not in circumstances C and does 
not emit a photon. 

It has since occurred to me that there are much simpler non- 
deterministic counterexamples to (2.20). Suppose, as seems 
likely, that the laws governing the lighting of a match when 
it is struck are only probabilistic, and consider a match struck 
under appropriate circumstances C (i.e., while dry, in the 
presence of oxygen, and so on) and lit. We would normally 
judge that the match would still have been in circumstances 
C had it not been struck, but it would not have lit if it had 
not been struck. Intuitively, the fact that the laws involved are 
only probabilistic makes no difference to this example. The 
match's not being struck still undercuts its lighting, because 
its being struck played a (nondeterministic) role in the match's 
actually lighting. In order to handle this kind of case, we must 
liberalize our notion of an historical antecedent. The match's 
being struck in circumstances C "probabilistically disposes" 
it to light even if it does not nomically necessitate its lighting. 
Leaving aside for the moment the question of how to define 
the notion of probabilistic disposing, let us symbolize the lat- 
ter as rP =>> Q1 and then revise the definition of 'historical 
antecedent' as follows: 

(2.21) X HAw P iff X is a set of simple states of affairs 
obtaining at w and X < P and X +> P .  

w 

With this revision, the match's not being struck undercuts its 
lighting, and so the example of the nondeterministic match is 
handled properly by the newly interpreted (2.20). In order to 

126 
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handle more complicated nondeterministic cases, we must also 
replace '=>' by '+>' in the definition of undercutting (2.14). 

w w 
Now let us consider how to define the relation of proba- 

bilistic disposing. A necessary condition for P to probabilisti- 
cally dispose Q to obtain is for P to be positively relevant to 
Q, i.e., prob(Q1P) > prob(Q1-P). But that is not sufficient, 
because there might be other features of the current circum- 
stances that offset this positive relevance. That is, there might 
be another simple state of affairs R that obtains and is such 
that prob(Q/R&P) 5 prob(Q/R&-P). This suggests the fol- 
lowing definition: 

(2.22) P =>> Q iff P and Q are simple states of affairs ob- 
w 

taining at w and and prob(Q/P) > prob(Q1-P) and 
(VR)(if R is a simple state of affairs obtaining at w 
and R < Q and (R&-P) is physically possible, then 
prob(Q/R&P) > prob(QlR&-P).13 

Thus, probabilistic disposing becomes a kind of "strong pos- 
itive relevance". With this understanding of probabilistic dis- 
posing, (2.20) also handles the Nute-Tichy counterexample. 
In that case, the proton's not being in a strong magnetic field 
is strongly positively relevant to its not emitting a photon, so 
the latter is undercut by the proton's being in a strong mag- 
netic field. The proton's being in the appropriate circum- 
stances for emitting a photon while in a strong magnetic field 
is not undercut, so we conclude that if the proton were in a 
strong magnetic field, it would have emitted a photon. 

I propose that with these modifications (2.20) provides a 
correct analysis of counterfactuals both in deterministic and 
nondeterministic worlds. Informally, the nearest P-worlds are 
those that result from, first, making minimal changes to the 
laws to accommodate P ' s  obtaining and, second, making min- 
imal changes to the nonundercut states of affairs to accom- 
modate P's obtaining along with the revised set of laws. 

l 3  We must consider what kind of probability is symbolized by 'prob' 
here. I propose that it is the objective definite probability symbolized by 
prob' in Pollock [1983]. 
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The analysis (2.20) validates all of the theorems of the logic 
SS, which can be axiomatized as follows: 

For many purposes, it is more convenient to formulate the 
logic of counterfactuals somewhat differently, adding '>' to 
propositional modal logic. If we do that, we get Modal SS, 
which results from adding the following axioms to the axioms 
and rules of S5: 

Modal SS holds regardless of whether the variables are taken 
to range over propositions, statements, or states of affairs. 

3. Minimal Change vs. Maximal Similarity 

The best-known analysis of counterfactuals is unquestion- 
ably that of David Lewis [1973], which proceeds in terms of 

' SS was first described in Pollock [1975]. The variables in these axioms 
and rules can be interpreted either as ranging over propositions, statements, 
or states of affairs. The logic holds in each case. 
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comparative similarity. Minimal change and maximal simi- 
larity sound like two sides of the same coin, so it may be 
suspected that there is little difference between the two anal- 
yses. Both analyses are motivated by the same basic idea due 
to Ramsey, and my analysis was strongly influenced by Lew- 
is's analysis. Furthermore, the analyses can even be formu- 
lated in a parallel fashion, as follows. Suppose that for each 
possible world w, Sw is a transitive and symmetric binary re- 
lation (i.e., a partial ordering) on possible worlds. We will 
read rw* s,+, w**' neutrally as rw* is at least as near to w as 
w** is1. Let us define 'w* is nearer to w than w** is1 as: 

(3.1) w* <w w** iff w* S,,, w** but not w** Sw w*. 

Let us also define: 

(3.2) '>' is strictly based upon 5 iff for each possible world 
w, (P > Q) obtains at w iff (Vw*)(if P obtains at w* 
and there is no w** such that P obtains at w** and 
w** <w w*, then Q obtains at w*). 

'>' is strictly based upon 5 iff M,,,(P) is the set of nearest P-  
worlds to w according to the ordering s W .  My analysis is 
equivalent to asserting that '>' is strictly based upon the relation: 

Lewis's analysis also takes the simple subjunctive to be based 
upon an ordering of worlds, but he gives a different truth con- 
dition. Let us define: 

(3.4) '>' is weakly basedupon 5 iffforeachpossible world 
w, (P > Q) obtains at w iff (Vw*)(ifPobtains at w* 
then there is a w** such that P obtains at w** and 
w** s,,, w* and for every w*** at least as close to 
w as w** is, if P obtains at w*** then Q obtains at 
w***). 

The rationale for this truth condition is that there may be no 
closest P-worlds to w, so what (P > Q) requires is that Q 
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becomes true and remains true once we approach w suffi- 
ciently closely. Lewis's analysis alleges that '>' is weakly 
based upon the relation of comparative similarity between 
worlds. 

My analysis differs from Lewis's in three respects: (1) he 
and I take counterfactuals to be based upon different ordering 
relations; (2) I take counterfactuals to be strongly based upon 
the appropriate ordering relation, whereas Lewis takes them 
to be only weakly based upon the appropriate ordering rela- 
tion; and (3) Lewis assumes that sW is connected, i .e. ,  that 
we can always compare worlds with respect to their nearness 
to a given world. The second and third differences are moti- 
vated by the first difference, but it is illuminating to explore 
them separately. 

Consider the following five principles: 

(SB) '>' is strictly based upon 5 .  

(WB) '>' is weakly based upon 5 .  

(LA) The limit assumption: (Vw*)(if P obtains at w* then 
there is a w** such that P obtains at w** and 
w** Sw w* and there is no w*** such that P 
obtains at w*** and w*** <,., w**). 

(GCP) The generalized consequence principle. 
(NV) Non-vacuity: If (-P > P) is possible then P is 

necessary. 

There are numerous interconnections between these princi- 
ples, some of the most important being the following: 

(3.5) SB -  ̂GCP. 
(3.6) [(SB v WB) & NV] -> (GCP <-> LA). 
(3.7) LA --> (SB <-> WB). 
(3.8) (GCP & -LA) + -WB. 

I take GCP to be intuitively correct. By (3 .3 ,  my analysis 
has no difficulty validating GCP, but Lewis's analysis does 
not validate it. Lewis rejects the limit assumption, so by (3.8), 
GCP fails on his analysis. In Pollock [I9761 I assumed NV 
and affirmed GCP, so in light of (3.6), our difference seemed 
to revolve around the limit assumption. Lewis interpreted our 
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difference in that way in Lewis [1981]. However, that is to 
mislocate it. I agree with Lewis that the limit assumption is 
false, and have done so all along. In Pollock [I9761 I began 
the analysis of counterfactuals by giving an analysis according 
to which they were strongly based upon an ordering of worlds, 
but then because I assumed NV and GCP and agreed that the 
limit assumption failed, I rejected SB in accordance with (3.6) 
and proposed a much more complicated analysis according to 
which counterfactuals were not based upon an ordering at all. 
That analysis was logically messy, and I have since come to 
realize that it does not work anyway.'' My present inclination 
is to endorse SB but reject NV for the reasons discussed be- 
low. I still endorse GCP and reject the limit assumption. 

Where does this leave us with respect to the limit assump- 
tion? Lewis and I agree that it fails, but we differ about when 
it fails and about how to handle the cases in which it fails. 
Let us say that the limit assumption fails for P at w provided: 

There is a w* such that P obtains at w* and for every w**, 
if P obtains at w** and w** SW w* then there is a w*** 
such that P obtains at w*** and w*** w**. 

In other words, there are P-worlds that get closer and closer 
to w without limit. Lewis is of the opinion that the limit as- 
sumption fails frequently, while I believe it fails only in un- 
usual cases. We differ on this because of our different choices 
for 5. Assuming his comparative similarity analysis, Lewis 
gave the following counterexample to the limit assumption: 

' I won't bore the reader by giving the analysis of Pollock [1976], but 
for anyone who wishes to pursue the matter, here is a counterexample to it. 
Suppose there are infinitely many F's in w, and let us symbolize the prop- 
osition that there are infinitely many F's as r(3=x)Fx1 and the proposition 
that there are at least n F's as f-(3nx)~x1, The latter is equivalent to r(3=x)Fx 
b' (3=x)(Fx & Gx)', which is the limit (in the sense of Pollock [1976]) of 
the sequence of propositions of the form r(3xx)Fx V (3,x)(Fx & Gx)'. Thus, 
it follows from the analysis of Pollock [I9761 that if there were infinitely 
many F's then for any G, there might be infinitely many things that are both 
F and G. Such a conclusion seems clearly incorrect. 
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Suppose we entertain the counterfactual supposition that at 
this point there appears a line more than an inch long. .. , 
There are worlds with a line 2" long; worlds presumably 
closer to ours with a line 1 112" long; worlds presumably 
still closer to ours with a line 1 114" long; worlds presum- 
ably still closer .. . . But how long is the line in the closest 
worlds with a line more than an inch long? If it is l+x" 
for any x however small, why are there not other worlds 
still closer to ours in which it is 1 +x/2" ,  a length still closer 
to its actual length? The shorter we make the line (above 
I"), the closer we come to the actual length; so the closer 
we come, presumably, to our actual world. Just as there is 
no shortest possible length above I", so there is no closest 
world to ours among the worlds with lines more than an 
inch 1ong.l6 

On the minimal change analysis, however, this is not a coun- 
terexample to the limit assumption. There is no undercutting 
involved in this example, so for any small value of x,17 there 
will be worlds minimally changed from the actual world to 
make the line 1+x inches long. These will be nearest worlds 
in which the line is more than one inch long. Nevertheless, 
there are some cases in which the limit assumption fails on 
both analyses. To take an example that will figure prominently 
in the next section, suppose we have an infinite set X of white 
billiard balls. Suppose further that the colors of the members 
of X are entirely independent of one another, so that if we 
changed the colors of the members of any subset of X the rest 
would still be white. Let P be the counterfactual hypothesis 
'Infinitely many of the members of X are black'. There are 
no nearest P-worlds to the actual world, because for any world 
w in which infinitely many members of X are black, there is 
a P-world w* in which one fewer member of X is black, and 
w* is both more similar to the actual world than w is and 
results from making a smaller change to the actual world than 

l6  Lewis [1973], 20-21. 
I' There may be laws precluding the length of the line's being greater than 

some upper bound. 
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w does.18 Thus, the limit assumption fails for both minimal 
change and comparative similarity. 

It is no criticism of one analysis that it makes the limit as- 
sumption fail in more cases than another analysis does, pro- 
vided the first analysis can handle those cases in a reasonable 
way. Lewis's analysis handles them differently than my anal- 
ysis does, and the difference is precisely the difference be- 
tween SB and WB. Lewis implicitly assumes that the only 
way to get SB is to adopt the limit assumption, and this makes 
SB appear unrespectable. But Lewis is wrong about that. It 
has been insufficiently appreciated that SB and WB are just 
two different ways of handling failures of the limit assump- 
tion. SB and WB agree in all cases in which the limit as- 
sumption holds, but handle failures of the limit assumption 
differently. Neither seems initially to handle such failures sat- 
isfactorily. If there are no nearest P-worlds to w ,  then SB makes 
all counterfactuals of the form (P  > Q) vacuously true at w. 
This seems intuitively incorrect. We do not want to affirm, 
for example, that Ghengis Khan would have conquered the 
world had there been infinitely many stars. But WB also seems 
to work incorrectly. For example, in Lewis's example of the 
line, WB leads to the result that for each x greater than zero, 
if the line were more than one inch long then it would not 
have been 1 +x inches long. On the contrary, at least for small 
values of x, it seems that had the line been more than one inch 
long then it might have been l + x  inches long. For example, 
it might have been 1 114 inches long, and it might have been 
1 112 inches long. Similarly, in the billiard ball case, if b is 
any member of X, WB leads to the result that if infinitely 
many members of X were black then b would not be black. 
But that also seems clearly wrong. It seems that if infinitely 
many members of X were black, then any member of X might 
be black. 

Thus, although WB and SB handle failures of the limit as- 
sumption differently, neither handles them in ways congenial 

la  It was on the strength of this son of example that I gave up SB in 
Pollock [1976]. Lewis [I9811 has recently discussed examples of this sort. 
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to intuition. What conclusions should we draw from this? First, 
note that in Lewis's example of the line, a minimal change 
analysis endorses what are intuitively the right conditionals. 
Because there are minimal changes making the line 1 114 inches 
long, 1 112 inches long, and so on, it follows that the line 
might be any of these lengths if it were more than one inch 
long. In these cases in which the limit assumption fails for 
comparative similarity but not for minimal change, the min- 
imal change analysis seems preferable. Second, although nei- 
ther analysis seems initially to work properly in those cases 
in which the limit assumption fails on both analyses, I will 
argue in the next section that such cases can be explained away 
and do not constitute counterexamples to either SB or WB. 
Finally, GCP still seems to me to be intuitively correct, and 
by (3.8), given GCP and the failure of the limit assumption, 
WB must be false. This is at least weak confirmation of SB. 

Next, let us turn to the issue of connectedness. Lewis as- 
serts, and in this I think he is correct, that the 'at least as 
similar to' relation is a total pre-ordering, i.e., it is transitive, 
reflexive, and connected. The "containment of change" re- 
lation formulated by (3.3), on the other hand, is clearly not 
connected. There can be two changes neither of which is con- 
tained in the other. This makes an important difference to the 
logic of counterfactuals, regardless of whether we adopt SB 
or WB. Lewis's analysis validates the logic VC that results 
from adding the following axiom to SS: 

(3.9) [(P > Q )  & -(P > -R)] + [(P&R) > Q]. 

The validation of (3.9) makes essential use of connectedness. 
In Pollock [I9761 I proposed a counterexample to (3.9). Barry 
Loewer [I9791 has suggested that the counterexample was 
suspect because it involved English counterfactual sentences 
with disjunctive antecedents, and it is well known that those 
are problematic. Lewis [I9811 endorses this objection. How- 
ever, the appeal to counterfactual sentences with disjunctive 
antecedents is inessential to the counterexample. We can give 
an example with an essentially similar structure that does not 
involve any such sentences. Consider a circuit consisting of a 
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power source, three switches, and two lights. Light L, can be 
turned on in either of two ways: by closing switch A ,  or by 
closing switches B and C together. Light L2 can also be turned 
on in either of two ways: by closing switch A ,  or by closing 
switch B .  Switch C is not connected with Â£ in any way. Sup- 
pose that all three switches are open and both lights are off. 
As there is no connection between L2 and C, C would still be 
open even if L2 were on and the circuit intact (symbolized: 
'(L2 & I) > -C'). If L2 were on (and the circuit intact) this 
might be because A was closed, and it might also be because 
B was closed. If L2 were on because A was closed, then 
L, would also be on. Thus, L, might be on if L2 were on 
and the circuit intact, i.e., we have -((L2 & I) > -Ll). 
If L1 and L2 were both on and the circuit intact, this might 
also be because B and C were both closed; i.e., we have 
-[(Ll & L2 & I) > -(B & C)]. As we have (L2 & I) > -C, 
we also have (L2 & I) > -(B & C). But the triple 

is a counterexample to (3.9). Thus eschewing disjunctive an- 
tecedents will not help. '' 

Lewis [I9811 admits that regardless of whether the preced- 
ing counterexamples are deemed persuasive, there may well 
be examples in which there are apparent failures of connect- 
edness. He writes: 

Ordinary counterfactuals usually require only the com- 
parison of worlds with a great deal in common, from the 
standpoint of worlds of the sort we think we might inhabit. 
An ordering frame that satisfies Comparability [i.e., con- 
nectedness] would be cluttered up with comparisons that 
matter to the evaluations of counterfactuals only in peculiar 

l9  In the original formulation of this counterexample in Pollock [1981], I 
omitted 'I' throughout. Nute [I9811 pointed out that the first member of the 
triple is then false. 
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cases that will never arise. Whatever system of general prin- 
ciples we use to make the wanted comparisons will doubt- 
less go on willy nilly to make some of the unwanted com- 
parisons as well, but it seems not likely that it will settle 
them all (not given that it makes the wanted comparisons 
in a way that fits our counterfactual judgments). An order- 
ing frame that satisfies Comparability would be a cumber- 
some thing to keep in mind, or to establish by our linguistic 
practice. Why should we have one? How could we? Most 
likely we don't. 

This argument is persuasive, and I know of no one who 
would dispute it. However, it is not exactly an argument 
against Comparability. Rather, it is an argument against the 
combination of Comparability with full determinacy in the 
ordering frame. We need no partial orderings if we are pre- 
pared to admit that we have not bothered to decide quite 
which total orderings (weak or simple, as the case may be) 
are the right ones. The advocates of Comparability certainly 
are prepared to admit that the ordering frame is left under- 
determined by linguistic practice and context.. . . So where 
Pollock sees a determinate partial ordering that leaves two 
worlds incomparable, Stalnaker and Lewis see a multiplic- 
ity of total orderings that disagree in their comparisons of 
the two worlds, with nothing in practice and context to se- 
lect one of these orderings over the rest. Practice and con- 
text determine a class of frames each satisfying Compara- 
bility, not a single frame that fails to satisfy Comparability. 

Lewis then observes that to suppose '>' to be based upon a 
partial ordering is equivalent to supposing that we evaluate 
counterfactuals as true iff they are true with respect to each 
of the multiplicity of total orderings that are in partial agree- 
ment with one another." This is being proposed as a strategy 
for saving the comparative similarity analysis of counterfac- 
tuals in the face of apparent nonconnectedness, but it does not 
seem to me that it can succeed. To suppose that we have con- 

20 For a precise statement of this theorem, see Lewis [1981]. 
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nectedness only because we haven't settled certain compari- 
sons implies that we could settle them and hence restore con- 
nectedness in any particular case. But could we? Consider the 
example of the electrical circuit given above. It turns essen- 
tially on the fact that closing A and closing B are each minimal 
changes resulting in L2's being on, while closing A and closing 
B and C together are each minimal changes resulting in LI7s 
being on. This is incompatible with connectedness, because 
that would require regarding the closing of both B and C as 
a bigger change than the closing of A in one case, but as a 
change of equal magnitude in another case. If this uncertainty 
were just a matter of our not having settled our comparisons, 
we could settle those comparisons in one way or the other. 
But that would have the effect of either making it false that 
if L2 were on that might be because A was closed, or making 
it false that if Li were on that might be because B and C were 
both closed. Surely, that must be wrong. Both of these 'might 
be' propositions are objectively true. Their truth is not just a 
matter of our not having settled certain comparisons we could 
settle any time we like. Thus, it does not seem to me that this 
way of basing counterfactuals on comparative similarity can 
be successful. There seem to be clear counterexamples to con- 
nectedness that cannot be handled by appealing to comparative 
similarity. 

Thus far I have been concentrating on the formal differences 
between the comparative similarity analysis and the minimal 
change analysis. But the ultimate test has to be which analysis 
gives the intuitively correct truth values for the counterfactuals 
in actual cases. We have seen that the minimal change anal- 
ysis seems to give the correct result in cases like Lewis's ex- 
ample of the line and in the circuit example, and the com- 
parative similarity analysis does not. But there are much simpler 
examples that have been proposed as counterexamples to the 
comparative similarity analysis. The best known is probably 
that of Nixon and his button." Suppose Nixon had pushed the 

' This was proposed by Fine [1975]. Basically similar examples have 
been proposed by a number of other authors. See Bowie [1979]. 
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button that would cause a nuclear holocaust. We all agree that 
had he done so there would have been a nuclear holocaust. 
But now consider a world in which he pushed the button but 
a minor miracle occurred preventing current from flowing 
through the wire and hence preventing the holocaust. That world 
is more like the real world than a world in which the holocaust 
occurred, so the comparative similarity analysis leads to the 
incorrect conclusion that had Nixon pushed the button there 
would have been no holocaust. The minimal change analysis, 
on the other hand, leads to the correct result. By legal con- 
servatism, a world minimally changed from ours to accom- 
modate Nixon's pushing the button must be one in which either 
no current flows, or all the rockets fail to fly, or . . . , or there 
is a nuclear holocaust. Only the negation of the last is undercut 
by Nixon's pushing the button, so it follows from the analysis 
that there would be a nuclear holocaust. 

To meet this son of difficulty, Lewis [I9791 has come to 
admit that counterfactuals are not to be evaluated in terms of 
our ordinary construal of comparative similarity. Lewis pro- 
poses instead that we employ a special comparative similarity 
relation that satisfies the following constraints: 

(1) It is of the first importance to avoid big, widespread, 
diverse violations of law. 

(2) It is of the second importance to maximize the spatio- 
temporal region throughout which perfect match of par- 
ticular fact prevails. 

(3) It is of the third importance to avoid even small, local- 
ized, simple violations of law. 

(4) It is of little or no importance to secure approximate 
similarity of particular fact, even in matters that concern 
us greatly. 

At the same time, this is an attempt to handle the temporal 
asymmetry of counterfactuals. Let us say that a counterfactual 
is backwards-directed if it is to the effect that if something 
had happened at one time, then something else that did not 
happen would have happened at an earlier time; and it is for- 
wards-directed if it is to the effect that if something had hap- 
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pened at one time, then something else that did not happen 
would have happened at a later time. The temporal asymmetry 
of counterfactuals lies in the fact that it is much harder to find 
true backwards-directed counterfactuals than forwards-di- 
rected counterfactuals, Lewis actually goes so far as to assert 
that there are no true backwards-directed counter factual^,^^ but 
we have seen that that is false. 

A number of comments are in order here. First, it is worth 
observing how much clauses (2) and (4) sound like a minimal 
change analysis. Talk of maximizing the spatiotemporal re- 
gion throughout which perfect match of particular fact prevails 
sounds very much like an attempt to get at the notion of min- 
imizing change to simple states of affairs. The principal dif- 
ference other than precision of formulation may be that Lewis 
is still supposing that we have a similarity measure that smears 
together the effects of different changes and allows us to com- 
pare them even when one is not strictly contained in the other. 
If this is a correct assessment, we can no longer object to 
Lewis's analysis in terms of a difference between comparative 
similarity and minimal change. The only objection we can raise 
to the appeal to comparative similarity is the one we have 
already raised concerning connectedness. 

However, the analysis proposed in section two does not pro- 
ceed just in terms of minimal change, but in terms of minimal 
change constrained by legal conservatism and undercutting. 
We can raise objections to Lewis's analysis insofar as it di- 
verges from those constraints. Clause (1) of Lewis's list of 
constraints sounds like legal conservatism, but in light of clause 
(3), his analysis does not satisfy legal conservatism and that 
seems to me to be a serious defect. Lewis's analysis would 
almost invariably have us construct nearest P-worlds by in- 
corporating "minor miracles" into them, i.e., " small, local- 
ized, simple, violations of law". For example, consider the 
conditional 'Had I struck this match it would have lit'. Among 

22 More accurately, Lewis allows that there may be true backwards-di- 
rected counterfactuals regarding the immediate past, but none regarding the 
more distant past. 
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the nearest worlds in which I struck the match, Lewis would 
have us include a world in which "a few extra neurons fire 
in a comer of my brain" in violation of (what he supposes 
are) deterministic laws of physics.23 But assuming that my 
brain now works in accordance with the laws of physics, surely 
it is true that my brain would still have worked in accordance 
with the laws of physics even if I had struck this match. At 
least in normal circumstances, my striking the match can have 
no effect on whether my brain works in accordance with the 
laws of physics. But Lewis's analysis would make this con- 
ditional false. 

Lewis is led to his peculiar treatment of laws by his attempt 
to explain the temporal asymmetry of counterfactuals. We must 
agree with Lewis that there is some kind of temporal asym- 
metry in counterfactuals, but we need not agree that it is so 
great as he supposes, and what asymmetry there is is easily 
explicable within the analysis of section two.24 It is a reflec- 
tion of the role of undercutting in the operation of counter- 
factuals. If (P  > Q) is a forwards-directed counterfactual, it 
can be made true by virtue of P undercutting -Q, and P can 
undercut -Q simply by being the denial of an essential part 
of Q's historical antecedents. But if (P > Q )  is a backwards- 
directed counterfactual, (P > Q) will only be true if either P 
nomically implies Q or P nomically implies the falsity of some 
essential part of the historical antecedents of -Q. Such nomic 
implications are hard to come by. For example, consider a 
match that is struck and then lights. Its being struck is an es- 
sential part of the historical antecedents of its lighting, so it 
is true that if it had not been struck it would not have lit. It 
is not the case, however, that if it had not lit it would not have 
been struck. Its not lighting does not nomically imply that it 
was not struck because something else might have gone wrong, 
nor does it nomically imply the falsity of any historical an- 
tecedent of its being struck. Thus the backwards-directed 

' This is adapted from Lewis's [I9791 discussion of Nixon and his button. 
24 In fact, for deterministic worlds, which are the only ones Lewis con- 

siders, it was already explicable within the analysis of Pollock [1976]. 
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counterfactual is just false. The only way to get a true back- 
wards-directed counterfactual in this case is by direct instan- 
tiation in a law. If it is a law that any match struck under 
circumstances C will light, then we can correctly conclude that 
if the match had not lit, either it would not have been struck 
or else conditions C would not have obtained. Thus, the tem- 
poral asymmetry of counterfactuals is an automatic conse- 
quence of the analysis in terms of undercutting, and no special 
maneuvering is required to accommodate it. 

Lewis's clause (3) appears to be an attempt to do what ap- 
peal to undercutting is supposed to do in my analysis, but as 
we have seen, it does not seem to be successful. The modified 
analysis of Lewis [I9791 comes much closer to my analysis 
(that of Pollock [1976] and the present one) than did his earlier 
analysis. But it differs in all the respects enumerated here, and 
insofar as it does so it still seems to be wrong. Thus despite 
similarities in our analyses, there are important differences, 
and these differences seem to me to favor the present analysis. 

4. Minimal Change and a Counterfactual 
Antinomy 

The ultimate purpose of this section is to defend my use of 
SB for evaluating counterfactuals in cases in which the limit 
assumption fails. The intuitive difficulty with SB in such cases 
is that it makes all such counterfactuals vacuously true. That 
seems intuitively wrong, but as we have seen, WB fares no 
better intuitively. My strategy will be to present a counterfac- 
tual antinomy and propose a solution to it. That solution will 
at least make SB more plausible than it seems now. 

Counterfactual conditionals tell us what would have been 
the case if something else had been the case. They are about 
"counterfactual situations" or states of affairs in a sense that 
requires that logically equivalent propositions describe the same 
situation. As such, the principle of logical interchange is 
undeniable: 

(4.1) W - Q) -  ̂ [(P > R) - (Q > R)]. 
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Logical interchange is central to any attempt to analyze coun- 
terfactuals in terms of the nearest possible worlds in which 
their antecedents are true. Without logical interchange we would 
have to discriminate between antecedents more finely than can 
be done in terms of the possible worlds at which they are true. 

Let us symbolize '"There are infinitely many F'sl as 
r(3asX)Fx1. Suppose we have an infinite set X of white billiard 
balls, and let b be any member of X. Suppose further that the 
colors of the members of X are entirely independent of one 
another, so that if we changed the colors of the members of 
any subset of X the rest would still be white. Thus, b would 
still be white and hence not black, even if infinitely many of 
the other billiard balls in X were black: 

(4.2) (3a~)(xâ‚ & x # b & Bx) > -Bb. 

In fact, b would still be white even if all the other billiard 
balls were black. 

If infinitely many of the balls in X were black, then any one 
of them might be black. In particular, b might be black: 

(4.3) - [ ( 3 ~ ) ( x â ‚  & Bx) > -Bb]. 

If there is any temptation to deny (4.3), note that if it is pos- 
sible for infinitely many of the balls in X to be black, then 
surely some of them must be such that they might be black if 
infinitely many of the balls in X were black. That is all we 
need for the present argument, because we can just choose b 
to be one of those balls. As there are no relevant differences 
between the different balls, however, it seems that it must also 
be true that any of them might be black. 

(4.2) and (4.3) seem unexceptionable until we note that the 
antecedents of their conditionals are logically equivalent: 

Clearly, the right side of (4.4) entails the left side. Con- 
versely, if only finitely many of the balls other than b are 
black, then even if b is black too there are only finitely many 
black balls in X. Hence by virtue of logical interchange, (4.2) 
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and (4.3) are contradictories of each other. And yet they are 
both true! We have a paradox. 

The simplest resolution of the paradox would be to take (4.2), 
(4.3), and (4.4) as a counterexample to logical interchange 
and conclude that the latter is false. Such a resolution is both 
implausible and unpalatable. It is unpalatable because it would 
destroy all of the recent work on counterfactuals that has pro- 
ceeded in terms of possible worlds. It is implausible because 
it seems intuitively that counterfactuals are really about coun- 
terfactual situations or states of affairs in a sense that makes 
logical interchange valid. Furthermore, it seems that if logical 
interchange were the culprit here, then we should be able to 
construct counterexamples not involving appeal to infinity, and 
that does not seem to be possible. 

(4.4) is unassailable. Can we then deny either (4.2) or (4.3)? 
I do not see how we can deny (4.2). Our supposition about 
the independence of the billiard balls can be made more pre- 
cise as follows: 

(4.5) (VY){if Y X and b <f. Y then 
[(Vx)(xEY -+ Bx) > -Bb]}. 

(4.5) is surely possible, and it certainly seems that it entails 
(4.2). But even if (4.5) does not entail (4.2), why can't we 
just assume (4.2)? (4.2) could be true even if (4.5) were false. 

It seems that the culprit must be (4.3). But it seems that if 
infinitely many of the balls in X were black, and there are no 
relevant differences between the balls, then any infinite subset 
of X might consist of black balls, and hence any one of the 
balls might be black. At the very least, there must be some 
infinite subset of the balls in X such that its members might 
all be black if infinitely many of the balls in X were black, 
and for the sake of the argument all we have to do is pick b 
from the members of that subset. Thus it seems impossible to 
deny (4.3). We still have a paradox. 

We can construct other examples of similar sorts that also 
appear to be counterexamples to logical interchange. But I am 
still inclined to affirm that the very nature of counterfactuals 
is such as to ensure that logical interchange must hold. Coun- 
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terfactuals are not about particular propositions, but rather about 
the situations described by the propositions. Logically equiv- 
alent propositions describe the same situations, so logical in- 
terchange must hold. 

It is noteworthy that antinomies of the preceding sort only 
seem to arise in contexts mixing counterfactuals with infinity. 
I think that the solution lies there. Consider an English sen- 
tence of the form "If infinitely many of the members of X were 
black, then it would be the case that P1. Let us abbreviate this 
sentence as "XxB > P1. We have taken this sentence to ex- 
press the counterfactual conditional ( 3 x ~ ) ( x â ‚  & Bx) > P. 
Our difficulty is that the propositions expressed by 
^XmB > P1 and r(X-{b})aB > P1 seem to have different truth 
conditions, and yet (3=x)(xâ‚ & Bx) is logically equivalent 
to (3Ã§x)(xâ‚¬(X-{ & Bx). It seems quite easy todescribe the truth 
conditions of rXscB > P1. If infinitely many of the 
members of X were black, then the members of any infinite 
subset of X might all be black. Thus, in evaluating the proposi- 
tion expressed by "XxB > P1, we must consider each infinite 
subset of X and ask whether P would be true if all the mem- 
bers of that subset were black. In other words, the proposition 
expressed by ^XxB > P1 is true iff: 

(4.6) (VY)[if Y C X and Y is infinite then 
((Vx)(xâ‚ -> Bx) > P)] .  

This intuitive description of the truth conditions seems to 
capture exactly the reasoning that led us to conclude that 
r(X-{b})mB > -Bbl is true but "XmB > -Bbl is false. It 
seems that these truth conditions make logical interchange ob- 
jectively invalid. 

But perhaps things are not as they seem. Suppose Z is a 
finite set of white billiard balls, and let "ZI,-,B > P' be the 
English conditional "If more than half of the members of Z 
were black then it would be the case that P1. There is a strong 
intuitive inclination to say in connection with this sentence 
that if more than half of the members of Z were black, then 
any subset containing more than half of the members of Z 
might consist of black balls. In other words, the following 
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describes the truth conditions for rZ,,2B > P1: 

(4.7) (VY)[if Y C Z and Y contains more than half of the 
members of Z then ((Vx)(xâ‚ -> Bx) > P)]. 

This makes the truth conditions for "Zy2B > P1 parallel to the 
truth conditions for "XaB > P1. It has the consequence that 
it is false that if more than half the members of Z were black, 
they would not all be black. 

But there is also a strong intuitive argument for the conclu- 
sion that (4.7) cannot describe the appropriate truth conditions 
for the propositions expressed by ^Zv^B > P1. Suppose Z has 
five members. Then more than half the members of Z are black 
iff at least three of them are black. We are supposing that the 
colors of the different members of Z are independent, so sup- 
posing a certain number of them to be black has no effect on 
the colors of the rest of them. The rest would still be white. 
Thus, even if more than half the members of Z were black, 
they still would not all be black. In evaluating the counter- 
factual we consider worlds resulting from minimally changing 
the actual world to accommodate its being true that more than 
half the members of Z are black, but to suppose all the mem- 
bers of Z to be black is a gratuitously large change. We have 
conflicting intuitions here. 

It is a commonplace that the English expression "If either 
P or Q then it would be true that R1 is ambiguous, having 
what I will call the literal reading ^(PvQ) > R1 and the dis- 
tributive reading r(P > R) & (Q > R)l. These are not equiv- 
alent. The latter implies the former, but not conversely.25 I 
suggest similarly that "If more than half of the members of Z 
were black then it would be the case that P1 has both a literal 
reading and a distributive reading. On the literal reading we 
take the antecedent of the conditional to be "More than half 

25 Donald Nute has explored the possibility of adopting 

as an axiom in the logic art of counterfactuals. If we add it to a theory 
containing logical interchange, we obtain the absurd theorem r(P > Q )  + 
[(P&R) > Q]'. See Nute [I9841 for his most recent discussion of this. 
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the members of Z are black1 and consider whether P would 
be true in all worlds resulting from minimal changes to the 
actual world that accommodate the truth of that antecedent. 
Thus, on the literal reading it is true that if more than half the 
members of Z were black, they still would not all be black. 
On the distributive reading we take the English sentence to 
mean that given any set of more than half the members of X, 
if its members were all black then it would be true that P .  
Thus, on the distributive reading it is false that if more than 
half the members of Z were black, they would not all be black. 
Only on the literal reading does "ZIl2B > P1 express a simple 
subjunctive conditional. On the distributive reading it ex- 
presses the complex quantified proposition symbolized by (4.7). 

What is it about the English sentences in the two preceding 
examples that leads us to say that they are alike in having both 
literal and distributive readings? Roughly, they are sentences 
having natural paraphrases of the form 

(4.8) If any member of the set G of states of affairs were 
to obtain then it would be the case that P .  

q f  either P or Q then R1 can be roughly paraphrased as 

If any member of the set {P,Q} were true then it would be 
the case that R .  

And "If more than half the members of Z were black then it 
would true that P1 can be paraphrased as 

If any member of the set of all states of affairs of the form 
"(Vx)(xâ‚ + Bx)l where Y is a subset of Z containing more 
than half of the members of Z were to obtain, then it would 
be true that P. 

But for "XsB > P1 there is a new twist. There are no minimal 
changes to accommodate the truth of "Infinitely many mem- 
bers of X are black1. Thus, on the literal reading a counter- 
factual of the form "If infinitely many members of X were 
black then it would be the case that P1 is vacuously true. Con- 
sequently, although there is theoretically such a literal read- 
ing, it is useless and hence the English conditional will only 
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be understood in the distributive sense. The English condi- 
tional is most likely univocal, having truth conditions cor- 
rectly described by (4.6). 

Applying the preceding considerations to the antinomy, what 
they show is that '^X=B > P1 does not express a simple sub- 
junctive conditional. In particular, r(X-{b})Ãˆ > -Bbl does 
not express (4.2), and "XsB > -Bbl does not express what 
(4.3) denies. The intuitions that led us to conclude that the 
English sentences express true and false propositions respec- 
tively were correct, but we were mistaken in concluding from 
them that (4.2) and (4.3) are true. Instead, the propositions 
expressed by the English sentences are rather complicated 
quantificational propositions of the form of (4.6) and its ne- 
gation. Thus, there is no conflict with the principle of logical 
interchange. 

This resolution of the antinomy removes the sting of im- 
plausibility from SB. The purported counterexamples to SB 
all involve sentences that should be read distributively rather 
than literally. This does not prove, of course, that their literal 
readings are vacuously true, but it makes it plausible that they 
are. Basically, what this response amounts to is to make SB 
immune from the test of intuition in those cases in which SB 
and WB diverge. But of course this also makes WB immune, 
so it might also be taken to be a vindication of W B . ' ~  The 
upshot of this is that intuition cannot adjudicate the difference 
between SB and WB. Perhaps the most reasonable stance to 
take here is that because we do not use counterfactuals in which 
the limit assumption fails (they are not expressed by English 
sentences), there is no fact of the matter regarding which of 
WB and SB is correct. We can define two kinds of counter- 
factuals, one working in terms of SB and the other in terms 
of WB, and there is nothing to determine which is "really" 
expressed by English sentences. Perhaps the only way to choose 
between them is on the ground of simplicity, but there SB is 
the clear winner. 

26 Note, however, that this is not a defense of WB as used by Lewis in 
his original comparative similarity analysis, because there the limit assump- 
tion also fails for cases unrelated to the antinomy. 
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Causation 

1. Counterfactual Analyses of Causation 

Recent advances in the understanding of subjunctive con- 
ditionals have suggested that they may be of use in the anal- 
ysis of causation. I will suggest here that although causation 
cannot actually be analyzed in terms of counterfactuals, the 
same framework of possible worlds and minimal change used 
in the analysis of counterfactuals can also be used to analyze 
causation. 

David Lewis [1973] was the first to propose a counterfactual 
analysis of causation, and he was followed by Pollock [I9761 
and Swain [1978]. Lewis's proposal is very simple. Where P 
and Q report the occurrence of events, he defines: 

(1.1) Q depends causally on P iff (P & Q & (-P > -Q)) 
is true. 

Lewis then maintains that if Q depends causally on P, then P 
causes Q. He found himself unable to identify causation with 
causal dependence because causation is transitive and causal 
dependence is not, so he proposed instead that causation should 
be identified with the ancestral of causal dependence: 

(1.2) P causes Q iff there is a finite sequence Rn, . . . ,Rn of 
propositions reporting the occurrence of events such 
that Rn = P and Rn = Q and for each i < n, Ri+i  
depends causally on Ri. 

' This is not quite Lewis's definition, but it leads to the same result when 
incorporated into his analysis of causation. 
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Swain's analysis is similar, but generalizes the way of ob- 
taining causation from causal dependence. 

There are numerous counterexamples demonstrating that this 
analysis is too simple. Specifically, causal dependence does 
not entail causation. Jaegwon Kim [I9731 presented several 
interesting counterexamples, although not everyone agrees that 
they are counterexamples. A pair of counterexamples that turn 
more directly on the logic of counterfactuals, and that seem 
to me to be decisive, are as follows. First, it follows from 
modal SS that if Q entails P then (-P > -Q) obtains. But it 
clearly does not follow that P causes Q. For example, the 
doorbell's ringing entails that it exists, so it would follow on 
Lewis's account that the doorbell's existing caused it to ring. 
But that is absurd. Second, if (-P > -Q) obtains and R is 
suitably independent of P and Q then [(-P & -R) > -Q] 
also obtains. That is equivalent to saying that [-(P v R) > 
-Q] obtains. But then it follows that Q depends causally on 
(P v R). Hence it follows from Lewis's account that because 
the light's being on was caused by the switch's being closed 
(due to causal dependence), the light's being on was also caused 
by its being the case that either the switch was closed or Cae- 
sar crossed the Rubicon. But that is again absurd.' 

I take these difficulties to illustrate the need for a stron- 
ger counterfactual condition in the analysis of causation. 
^-P > -Q)l is basically a negative condition. We also need 
a positive condition. It seems obvious that PCQ ("P is 
a cause of Q1) should entail the necessitation conditional 
(P >> Q), but it does not do so on Lewis's account. My anal- 
ysis (in Pollock [1976]) built upon this observation, defining 
causation in terms of the satisfaction of both r(P >> Q)l 
and r(-P > -Q)l, together with some additional conditions 
intended to handle epiphenomena, the direction of causation, 
and other complexities. The resulting analysis was extremely 

One might try to avoid these difficulties by insisting that the doorbell's 
existing and its being the case that either the switch was closed or Caesar 
crossed the Rubicon are not events. But see the discussion of causal relata 
in section two. 



V. Causation 

unwieldy and has since been decisively refuted by 
co~nterexam~les .~  

To my mind, one of the main difficulties for any counter- 
factual analysis of causation is getting causation to come out 
transitive. No familiar subjunctive conditional is transitive, and 
so some special maneuvering appears to be required in order 
to get transitivity. The simplest solution to this problem is that 
proposed by Lewis. The basic idea is that we use subjunctive 
conditionals to define a "core causal relation" Cn, and then 
we identify causation with the ancestral of Co. This is a "brute 
force" strategy for obtaining transitivity. It achieves its goal 
only at the expense of undesirable side effects. In defining Co 
the natural procedure is to conjoin a number of intuitively nec- 
essary conditions for causation. If we then define C to be the 
ancestral of Co, what were necessary conditions for Co will 
generally fail to be necessary conditions for C. Thus, the in- 
tuitively necessary conditions for causation fail to be neces- 
sary conditions according to this analysis. We will see an ex- 
ample of this in section three. The only obvious way to avoid 
this difficulty is to construct an analysis of C in terms of an 
underlying conditional that is already transitive. This does not 
seem initially very hopeful because no known nontrivial sub- 
junctive conditional is transitive. The purpose of section three, 
however, is to construct a strong subjunctive conditional that 
is transitive and entailed by causation, and is plausibly the 
conditional underlying causation and in terms of which caus- 
ation is to be analyzed. This will be called 'the causal 
conditional'. 

The reason transitivity is important is that causation is prop- 
agated by causal chains. For example, closing a switch causes 
a light to come on by causing current to flow in the wires, 
where the latter causes the light to come on. Philosophers have 

By Glenn Ross [1982]. One of the features of my 1976 analysis was 
that it did not make causation transitive. I tried to argue that that was a virtue, 
giving what I took to be counterexamples to the transitivity of causation. But 
I have since become convinced that those putative counterexamples were 
specious, so that is another defect of my 1976 analysis. 
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generally thought of causal chains as simple linear chains, but 
that is unrealistic. Causal chains can diverge and reconverge. 
For example, we might have the following causal chain: 

Here closing switch S causes lights Ll and L2 to each come 
on. Ll's coming on activates photocell P I ,  and L2's coming 
on activates Pi. Pl and P2 jointly cause relay R to close, which 
causes light L3 to come on. If all this goes according to plan, 
then closing S causes L3 to come on. In order for causal chains 
to work in this way, causation must be not only transitive but 
also adjunctive, i.e., 

(1.3) If PCQ and PCR then PC(Q&R). 

In the preceding example, transitivity allows us to conclude 
that SCPl and SCP2 and (Pl & P2)CL3. But in order to 
conclude that SCL3, we must also be able to conclude that 
SC(Pl & P2), and for that we need adjunctivity. This suggests 
that adjunctivity is as important to causation as transitivity. It 
will be gratifying then that without any ad hoc maneuvering, 
the causal conditional turns out to be adjunctive. 

2 .  Causal Relata 

Philosophers have typically taken causation to be a relation 
between events. In my opinion, that is incorrect but harmless 
if we do not bear down too heavily on the notion of an event. 
Causation should more properly be viewed as a relation be- 
tween states of affairs. This is best seen by noting that there 
is no restriction on the logical type of a cause or effect. There 
can be negative causes ('His not arriving on time caused the 
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party to be delayed'), disjunctive causes ('Its being the case 
that either switch 1 or switch 2 was closed caused the light to 
come on'), existential causes ('There being more than twenty 
people in the elevator caused the cable to snap'), and so on. 
These are perfectly respectable states of affairs, but they are 
not what would ordinarily be called 'events'. Events are things 
like baseball games, duels, and eruptions. Philosophers have 
often failed to distinguish between events and states of af- 
f a i r ~ . ~  For example, Davidson [I9701 gives the following list 
of putative events: Sally's third birthday party, the eruption of 
Vesuvius in A.D. 1906, my eating breakfast this morning, 
and the first performance of Lulu in Chicago. Although the 
others are events, my eating breakfast this morning is a state 
of affairs. This would not be troublesome were it not that phi- 
losophers have repeatedly noted that negations and disjunc- 
tions of events (if there are such things) are not usually events 
and so have concluded that there cannot be negative or dis- 
junctive causes. The above examples demonstrate that such a 
conclusion is false. 

It is clear, I think, that states of affairs are causal relata. 
But we can also talk about events being causes, such as in 
'The rainstorm caused the game to be delayed'. This has sug- 
gested to some philosophers that events are the basic causal 
relata, and talk of states of affairs as causes is to be analyzed 
in terms of causal relations between events. In fact, however, 
the logical order is the reverse. Events can be causes only in 
the same sense that physical objects can be causes. For ex- 
ample, we can say that the tree caused the accident. A phys- 
ical object can only cause something by being a certain way. 
For instance, the tree might cause the accident by being too 
close to the road. If x causes something by being F, we can 
equally say that x's being F is the cause, thus reducing caus- 
ation by physical objects to causation by states of affairs. Now 
consider events, for example, a duel with swords. We might 
say that the duel caused women to faint. Ordinarily, when we 

For discussions of this distinction, see Vendler [I9671 and [1967a], Pol- 
lock [1976], and Peterson [1981]. 
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say that an event caused something, we have in mind that the 
event's occurring caused it. Thus, we would normally inter- 
pret this as meaning that the duel's occurring caused women 
to faint. But it might have been something else about the duel 
that caused women to faint. For example, women might be 
inured to duels, but this one's being exceptionally bloody caused 
women to faint anyway. The point here is that events are causes 
only in the sense that physical objects are also causes, and 
that sense is to be spelled out in terms of causation by states 
of affairs. States of affairs must be regarded as the most fun- 
damental causal relata. They will be so regarded for the pur- 
poses of the present analysis. 

3.  The Causal Conditional 

In constructing a logical analysis, it is customary to make 
various proposals and test them directly against intuition. I 
find, however, that most people have quite unclear intuitions 
about complicated cases of causation, and hence the appeal to 
intuition tends to be indecisive. Thus, my strategy will be 
somewhat different. By looking only at simple cases in which 
our intuitions are reasonably secure, we can defend a few for- 
mal principles regarding causation. These formal principles 
will provide formal constraints on the analysis of causation. 
My strategy will be to see how far we can get relying almost 
exclusively on these formal constraints. 

The first assumption I will make about causation is an ob- 
vious one. In order for one state of affairs to cause another, 
they must both obtain: 

(Cl)  PCQ + (P & Q). 

The following principle has a distinguished history: 

(3.1) PCQ + (-P > - Q ) . ~  

According to this principle, in order for P to be a cause of Q 
it must be the case that Q would not have obtained had P not 

See Lewis [I9731 for a discussion of this principle. 
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obtained. For example, consider a switch that controls a light. 
We would not agree that the switch's being closed caused the 
light to be on if the light might have been on anyway. 

Although there is a considerable intuitive support for (3. l) ,  
there are also examples in which it seems problematic. These 
involve causal overdeterrnination. Suppose we have two 
switches and a light wired together in such a way that the light 
is on whenever at least one of the switches is closed. Suppose 
further that both switches are closed. It does not seem unrea- 
sonable to insist that the following are true: 

(3.2) Switch 1's being closed causes the light to be on. 

(3.3) That both switches are closed causes the light to be 
on. 

But it is false that the light would be off if switch 1 were not 
closed-switch 2 would still be closed and so the light would 
still be on. It is also false that the light would be off if the 
switches were not both closed-it would still be on if just one 
of the switches were closed. These appear to be counterex- 
amples to (3.1). On the other hand, it might be retorted that 
(3.2) and (3.3) are false and that what causes the light to be 
on is that at least one of the switches is closed-not that they 
are both closed and not that a specific one of them is closed. 
What makes this retort seem reasonable is just (3.1). The cause 
is not that switch 1 is closed because the light would still be 
on even if switch 1 were not closed. Similarly, the cause is 
not that both switches are closed, because the light might still 
be on even if they were not both closed. 

(3.2) and (3.3) seem intuitively reasonable, but so does the 
rejoinder. What this suggests is that we are confusing two dif- 
ferent causal concepts. We can distinguish between sufficient 
causes and strict causes. Strict causes satisfy (3.1). Sufficient 
causes, on the other hand, are states of affairs or conjunctions 
of states of affairs that would be strict causes if they occurred 
alone (without any other sufficient causes being present). We 
can define 'sufficient cause' in terms of 'strict cause' as follows: 
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(3.4) P is a sufficient cause of Q iff there is a set X of states 
of affairs obtaining at the actual world such that (1) P 
is equivalent to a conjunction of members of X, (2) 
VX (the disjunction of X) is a strict cause of Q,  and 
(3) for each R in X, if none of the members of X ob- 
tained then R would cause Q were it to obtain, i.e., 
-vX > (R > RCQ). 

I shall assume that strict causation (symbolized by 'C') sat- 
isfies (3 .1 ) .  (3.1) will not be one of my official assumptions, 
however, because it follows from either of two stronger as- 
sumptions. Let us symbolize "PCQ obtains at w1 as P̂C&'. 
Recalling that ~ ~ - - Q ~ ~  is the set of all -0-worlds, by principle 
(2.4) of Chapter Four, principle (3.1) is equivalent to: 

(3.5) If PCWQ then MJ-P) C II-QII. 

I propose that a stronger condition is also satisfied. Consider 
a simple circuit consisting of a switch and a light wired in 
series with a power source so that the switch's being closed 
(P) causes the light to be on (Q). In accordance with (3.1) we 
have (-P > -Q). Now let R be some irrelevant state of affairs 
that actually obtains, such as there being a typhoon in Japan. 
We also have [-(P v R) > -Q], because if the switch were 
open and there were no typhoon in Japan then the light would 
be off. But we do not want to affirm that the light's being on 
is caused by the disjunctive state of affairs that obtains iff 
either the switch is closed or there is a typhoon in Japan. The 
second disjunct is irrelevant. What that irrelevancy amounts 
to is that although one way of having the light off is to have 
the switch open, adding that there is no typhoon in Japan is 
a gratuitous additional change that is not required to bring 
it about that the light is off. This indicates that in order 
for P to cause Q ,  the nearest -P-worlds must not only be 

" Although (3.1) is suggested by Lewis's analysis, his analysis does not 
validate (3.1). The difficulty is the general one remarked in section one that 
necessary conditions for the core relation will not generally be necessary 

conditions for its ancestral. Lewis's core relation is rP  & Q & (-P > -Q)', 
and this of course does satisfy (3.1), but the ancestral does not. 
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-0-worlds-they must be nearest -Q-worlds. This is my 
second assumption about causation: 

(C2) If PC,Q then M,(-P) C Mw(-Q). 

In other words, if P causes Q then a minimal change removing 
the cause is also a minimal change removing the effect. In the 
case of our switch and light, one way to minimally alter the 
world so as to have the light off is to minimally alter it so that 
the switch is open. 

My third assumption arises from asking why (C2) and hence 
(3.1) hold. Consider the light controlled by the single switch 
again. It seems that the reason the light would be off if the 
switch were open is that the switch's being open would cause 
the light to be off. I propose in general: 

(C3) PCQ + [-P > PCQ]. 

(C2) and (C3) would hold vacuously if MJ-P) = 0. This 
occurs, for example, if P is necessarily true. The final con- 
straint to be proposed in this section is then that (C2) and (C3) 
hold nonvacuously: 

(C4) If PC& then MJ-P) # 0. 

(C3) is a "reflection principle". Reflection principles are 
so called because they can be applied to themselves to yield 
more complicated principles. By (A7) of modal SS and (C3), 
we get: 

(3.6) PCQ + [-P > (P > PCQ)]. 

By another application of (A7) and (C3), we get: 

(3.7) PCQ + [-P > (P > [-P > P C ~ .  

By continuing in this manner we obtain all principles of either 
of the following forms: 

(3.8) PCQ+ [-P > (P > [-P > ... > 
(P  > PCQ) . . . I)]. 

(3.9) PCQ + [-P > (P > [-P > ... > 
- P  > PCQ] ... I)]. 
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The nested antecedents in these conditionals involve our mov- 
ing to a nearest -P-world, and then a nearest P-world from 
that, and then a nearest -P-world from there, and so on. Let 
us say that such a sequence of worlds is a P-sequence and that 
every world that can be reached in this way is P-accessible 
from the actual world. Precisely: 

(3.10) u is a P-sequence iff u is a sequence of length o of 
worlds such that for each i in w: 
(a) if P obtains at ui  then u,+iâ‚¬M,,(-P 
(b) if -P obtains at ui then u,+,â‚¬My(P 

Let Seq(w,P) be the set of all P-sequences starting from w, 
i.e., 

(3.11) Seq(w,P) = { u  o- is a P-sequence and ug = w}. 

The set of all worlds P-accessible from w is then: 

(3.12) AJP) = {w* (^a)(3i)[u<=Seq(w,P) and ui = w*]}. 

More precise versions of (3.8) and (3.9) can now be formu- 
lated as follows: 

(3.13) If PCwQ and w * â ‚ ¬ A ~ ( P ) ~ ~ ~ P  then PCw*Q. 

(3.14) If PCwQ and w * â ‚ ¬ A ~ ( P ) ~ ~ ~ - P  then PCÃˆ,Q 

From (C3) and (C4), we get: 

(3.15) If PCwQ then AJP) # 0. 

Given (3.13) and (3.14) we can immediately obtain from (C2): 

(3.16) If PCwQ and w*â‚¬AJP then Mw.(P) C Mw.(Q) and 
Mw*(-P) C Mw*(-Q). 

We can take the consequents of (3.15) and (3.16) to define a 
conditional. (P Ã‘ Q) is the state of affairs that obtains iff the 
consequents of (3.15) and (3.16) hold: 

(3.17) (P -Ã Q) = V{wl AJP) # 0 and for each w* in 
AJP), Mw*(P) C MJQ) and MA-P) C Mk-Q)}.' 

' Recall that the disjunction of a set of possible worlds is a state of affairs 
that obtains iff one of those worlds obtains. 
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Less formally, (P Ã‘ Q )  obtains at w iff Aw(P) # 0 and for 
each world w* that is P-accessible from w ,  Mw*(P) C Mw.(Q) 
and Mw.(-P) C Mw.(-Q). This is the causal conditional. It 
follows from (C1)-(C4) that: 

(3.18) PCQ -Ã (P  + Q) .  

The causal conditional has an illuminating reformulation: 

(3.19) (P + Q )  obtains at w iff Seq(w,P) # 0 and 
Seq(w,P) C Seq(w,Q). 

Seq(w,P) can be regarded as the set of sequences of worlds 
that can be reached by manipulating the cause (making min- 
imal changes that impose it and remove it). Thus, what the 
causal conditional says is that manipulations of the cause are 
also manipulations of the effect. 

It follows immediately from (3.19 
tional is transitive: 

(3.20) [(P + Q )  & (Q + R)l -  ̂

) that the causal condi- 

(P  Ã‘ R) .  

It follows by modal SS that the causal conditional is adjunctive: 

(3.21) [(P -Ã Q )  & (P -Ã R)]  + [P + (Q  & R)].' 

The causal conditional satisfies the reflection principle for 
causation: 

(3.22) (P -Ã Q )  + [-P > (-P ++ -Q)] .  
I 

Several other noteworthy properties of the causal conditional 
are as follows: 

(3.23) (P + Q )  ++ (-P -Ã -Q). 

(3.24) [(P + Q )  & (P + R)]  -  ̂[P -Ã (Q  v R ) ] .  

(3.25) [(P -*Ã Q )  & (Q > R)]  -  ̂(P > R) .  

(3.26) (P -  ̂Q )  -  ̂(P  >> Q) .  

(3.27) (UP v 0 - P )  + -(P + Q).  

Specifically, (3.21) follows from the fact that for each P and Q, 
MJP)~IIPII C M J P  & Q) and M J P  v Q) C M J P )  u MJQ).  
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Let us say that P is causally contingent at w iff A,,,(/') # 0. 
Where 'a' symbolizes nomic equivalence, the following two 
principles hold if P is causally contingent: 

(3.29) (P Ã Q) -  ̂(P - Q). 

In general: 

(3.30) (P Ã Q) -  ̂ [(P - R) - (Q -Ã R)]. 

Some principles that do not hold are: 

We have constructed a transitive and adjunctive conditional 
that is entailed by causation and that is plausibly the source 
of the important logical properties of causation. This strongly 
suggests that causation is to be analyzed in terms of the causal 
conditional. Such an analysis will be developed in the next 
two sections. 

4. The Role of Time 

In attempting to analyze causation in terms of the causal 
conditional, it might first be suggested that the two relations 
can be identified for states of affairs that actually obtain: 

(4.1) PCQ ++ [P & Q & (P-Ã Q)]. 

That this is too simple can be seen by considering theorem 
(3.28) according to which (P += P) holds whenever P is causally 
contingent (which it normally is). More generally, by theorem 
(3.29), for causally contingent P: 
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However, nomically equivalent states of affairs do not invar- 
iably cause one another, as can be seen by considering a sim- 
ple example. Suppose there is a kind of particle regarding which 
there are physical laws requiring it to fluctuate between two 
states S ,  and S2 at regular intervals of e  seconds. If x is such 
a particle, x's entering state S ,  at t  nomically implies it will 
enter S2 at t+e, and x's entering S2 at t+e nomically implies 
it entered S l  at t .  These two states of affairs are thus nomically 
equivalent. However, although we would agree that x's en- 
tering S ,  at t  (call this ' P ' )  causes x to enter S2 at t+e ( Q ) ,  
we would not agree that x's entering S2 at t+e causes x to 
enter S ,  at t .  This shows both that cause and effect are some- 
times nomically equivalent and that nomically equivalent states 
of affairs do not invariably cause one another. 

It might be supposed that the preceding difficulty can be 
avoided by some suitably complex counterfactual analysis of 
causation. But in fact no purely counterfactual analysis can 
make the required discriminations. It follows from legal con- 
servatism that if P is not counterlegal at w, and P and Q are 
nomically equivalent at w ,  then Mw(P) = Mw(Q). This implies 
that no counterfactual condition can distinguish between nom- 
ically equivalent states of affairs. Thus, any purely counter- 
factual analysis of causation must either imply that each of P 
and Q causes the other in the preceding example or that neither 
causes the other. But either implication is false. Consequently, 
although a correct analysis of causation may appeal to coun- 
terfactuals, it must also appeal to something else. 

Clearly, what distinguishes between cause and effect in the 
preceding example is temporal precedence. It is the fact that 
x's entering S ,  at t  occurs before x's entering 5;  at t+e that 
is responsible for our judging the former to cause the latter 
but not conversely. This is easily seen by noting that if we 
reverse the direction of time (i.e., suppose t+e to be an ear- 
lier time than t ) ,  we also reverse the direction of causation. 
Under those circumstances, we would take x's being in S2 at 
t+e to cause x's being in S l  at t ,  rather than the other way 
around. This strongly suggests that what must be added to 
counterfactual conditions to obtain a correct analysis of causa- 
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tion is a temporal condition. There will be resistance to this 
move from philosophers who feel that backwards causation 
should be logically possible or who want to use causation to 
define the direction of time. I am unmoved by considerations 
of backwards causation, but I can agree that if it is possible 
to characterize the direction of time in terms of causation then 
it would be desirable to have an analysis of causation that does 
not appeal to temporal precedence. However, the mere fact 
that that would be desirable is no reason to think it is possible, 
and I do not see any way to do it. Thus, I shall make free use 
of temporal relations in analyzing causation. 

Whether one state of affairs causes another cannot be rel- 
ative to a frame of reference. This is an absolute matter in- 
dependent of frames of reference. Accordingly, the temporal 
relations involved in the analysis of causation must also be 
absolute temporal relations and not relative to frames of ref- 
erence. These are the same relations that played a role in the 
analysis of counterfactuals. We symbolize rP is absolutely 
earlier than Q1 as rP < Q1 and rP is absolutely simultaneous 
with Q1 as rP s Q1. Our only assumptions regarding these 
relations are the following: 

(4.2) I f P  < Q and Q < R then P < R. 

(4.3) If P s Q and Q < R then P < R 

(4.4) If P < Q and Q s R then P < R. 

Having decided to take time into account, it is not altogether 
obvious how to do that. Some states of affairs have natural 
"dates", but others do not. For example, if a switch's being 
closed at t causes a light to come on at t*, then t and t* are 
the appropriate dates for these two states of affairs. But what 
are the appropriate dates for 'My grandfather's having been a 
horsethief caused me to be embarrassed throughout my later 
childhood'? In order to sort this out, let us begin by consid- 
ering the simplest case, which is that of states of affairs that 
can be regarded as having natural instantaneous dates. The 
most obvious of these are the simple states of affairs of Chap- 
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ter Four. Those are states of affairs ascribing logically simple 
concepts or their negations to n-tuples of objects at specific 
times. A second category of dated states of affairs are enu- 
merative states of affairs, which enumerate the objects ex- 
emplifying a simple concept or the negation of a simple con- 
cept. More accurately, enumerative states of affairs have the 
form '"'ai ,..., an being the only F's at t l ,  or more generally, 
Â¥"Th members of X being the only F's at t l ,  where F is either 
a simple concept or the negation of a simple concept. I will 
call simple and enumerative states of affairs basic states of 
affairs. Let B be the set of all basic states of affairs, and let 
Bw be the set of all basic states of affairs obtaining at a world 
w. 

For basic states of affairs, the temporal condition required 
for causation seems clear-the cause must precede the effect: 

(4.5) If P and Q are basic states of affairs and PCQ then 
P < Q .  

The problem now is how to generalize this condition to non- 
basic states of affairs. I suggest that the solution lies in ob- 
serving that in any case of causation involving nonbasic states 
of affairs, those states of affairs can be regarded as obtaining 
because related sets of basic states of affairs obtain. The ob- 
taining of a nonbasic state of affairs can be regarded as su- 
pervenient upon the obtaining of basic states of affairs. For 
example, the obtaining of the light's burning steadily from 3 
a.m. to 6 p.m. consists of the obtaining of all events of the 
form the light's burning at t for t between 3 a.m. and 6 p.m. 
To take another example, if switch 1 is closed and switch 2 
is open, then the obtaining of at least one of the switch's being 
closed consists of the obtaining of switch 1's being closed. Or 
if Charlie and Herkimer are the only dragons left in the world, 
then the obtaining of all the dragons in the world being air- 
borne at t consists of the obtaining of Charlie's being airborne 
at t and Herkimer's being airborne at t and Charlie and Her- 
kimer's being the only dragons at t .  In each case, the nonbasic 
state of affairs is entailed by the set of basic states of affairs 
upon which it is supervenient. 
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In Pollock [I9761 and [I9821 I proposed definitions on the 
order of: 

(4.6) P is supervenient upon X at w iff X C Bw and X entails 
P and no proper subset of X entails P. 

However, Glenn Ross has convinced me that such a definition 
is inadeq~ate .~  The difficulty is that (4.6) embodies a kind of 
"limit assumption" according to which if a state of affairs is 
entailed by some subset X of Bw, there is always a smallest 
subset of X entailing that state of affairs. There are numerous 
counterexamples to this assumption. For example, consider 
ascriptions of velocity. I presume that these are not logically 
simple. Instead, they supervene upon states of affairs con- 
sisting of objects being at various locations at various times. 
However, velocity at a time t is defined in terms of limits of 
ratios involving locations and times as those times approach 
t arbitrarily closely. Where to < t < t i ,  the set of all actual 
states of affairs of the form x's being at location p at t* where 
to < t* < t, entails x's having velocity v at t .  But there is no 
minimal set of states of affairs describing x's location at dif- 
ferent times that entails its having the velocity it does at t. 
Thus, it would follow from (4.6) that x's having velocity v at 
t is not supervenient upon any set of basic states of affairs. In 
order to avoid this sort of difficulty, we must define more 
simply: 

(4.7) P is supervenient upon X at w iff X C Bw and X entails 
P. 

This definition allows X to contain much excess baggage not 
required for the entailment. This will force us to make some 
of our definitions more complicated than they might otherwise 
be. 

Not all states of affairs are supervenient upon sets of basic 
states of affairs. For example, a state of affairs consisting of 
a particular subjunctive generalization being true is not en- 
tailed by any set of basic states of affairs. Similarly, a coun- 

In Ross [I9821 
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terfactual state of affairs consisting of one nonactual state of 
affairs being a counterfactual consequence of another will not 
be entailed by any set of basic states of affairs that actually 
obtain. (To get an entailment in this case we must add some 
subjunctive generalizations.) In all cases, it appears that states 
of affairs that are not supervenient upon sets of basic states 
of affairs cannot be causal relata. Possible causal relata are 
characterized by the following definition: 

(4.8) PERw iff P is supervenient upon some set of basic 
states of affairs at w. 

Rw is the set of all states of affairs that could be causal relata 
at the world w. 

My proposal is now that the temporal relation required for 
causation between nonbasic states of affairs can be defined in 
terms of the temporal relations between the states of affairs 
upon which the nonbasic states of affairs are supervenient. Let 
us define: 

(4.9) P Kw Q iff P , Q E R ~  and (Vw*)(VX){if w*EMJ-P) 
and Q is supervenient upon X at w, then (3Xo)(3Y)[X 
entails /\Xy and Q is supervenient upon Xo at w and 
Xo C Bw and P is supervenient upon Y at w and 
(VR)(VS)(if REXo and SEY and Râ‚¬ and SEB,, and 
R and S do not obtain at w* then S < R)]}. 

The final condition I will impose upon causation is: 

(C5) If PC& then P KW Q. 

To motivate (C5), consider some examples: 
Beginning with the simplest case, suppose P and Q are ba- 

sic states of affairs and P is a cause of Q. Our temporal con- 
straint in this case should be equivalent to the requirement that 
P < Q. We can establish this equivalence if we make the 
following reasonable assumption about basic states of affairs: 

(Al) If X C Bw and PGB,. and X entails P then 
{Ql QEX and Q -a P} entails P. 

This is the assumption that basic states of affairs with dates 
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different from that of P cannot contribute to the entailment of 
P by X. Given (Al),  we have the following theorem: 

(4.10) If P,Qâ‚¬B. and (P -w Q)  obtains at w then P < w  Q 
iff P < Q .  

Proof: Suppose P,Qâ‚¬ and (P Ã‘ Q )  obtains at w. Then 
Seq(w,P) + 0, so there is a w* in MJ-P). As (P -+ Q )  
obtains at w ,  w*â‚¬Mw,(-Q {Q} C Bw and {Q} entails Q ,  
so there is an Xy C Bw such that Q is equivalent to AXo,  
and there is a Y C B., such that Y entails P and (VR)(VS)[if 
R,SGB,, and REXo and SEY and R and S do not obtain at 
w* then S < R]. By (Al),  {R\ REXo and R s Q} entails 
Q and {S\ SEY and S a P} entails P. As P and Q do not 
obtain at w*, there is an R in {R\ REXo and R -a Q}  and an 
S in {q SEY and S -s f i  such that R and S do not obtain 
at w*. So S < R. As P s R and Q s S ,  P < Q .  

Conversely, suppose P < Q .  Suppose w*%,(-P) and 
X C B, and X entails Q.  Then X entails A{Q},  and {Q} 
entails Q ,  and {P} C B,, and {P} entails P. P and Q do not 
obtain at w*, and P < Q,  so (VR)(VS)[if R , S â ‚ ¬  and Râ‚¬{ 
and Sâ‚¬{  and R and S do not obtain at w*, then S < R]. 
So P XÃ Q.  

To illustrate (C5) with a slightly more complicated exam- 
ple, consider a switch that controls a light. Suppose the switch 
was closed just once yesterday, at t ,  and correspondingly the 
light came on just once yesterday, at t*. The switch's having 
been closed at some time yesterday (P )  caused it to be the 
case that the light came on at some time yesterday (Q). This 
is a causal relation between nonbasic states of affairs. It seems 
clear that in this case the temporal relation required for P to 
cause Q is that t precede t*, and that is just what (C5) requires. 
In this case, Xo is {the light's coming on at t*}, and Y is {the 
switch's being closed at t}. The only R is the light's coming 
on at t*, and the only S is the swtich's being closed at t .  Thus, 
what is required for P <Ã Q is that t precede r*. 

Next, keeping P and Q the same, suppose the switch was 
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closed several times, at times ti ,. . . ,tÃˆ and the light came on 
at times t*l,. . . ,t*,,,. It is tempting to suppose that in order for 
P to cause Q,  for each ti there must be a corresponding t*, 
such that the switch's being closed at t, caused the light to 
come on at t*,, but such a supposition is incorrect. For ex- 
ample, the switch might control the light by activating a mech- 
anism that must be reset before the light can be turned on in 
that way a second time. Then every closing of the switch after 
the first might be inefficacious in bringing it about that the 
light comes on. Thus, all that can be required is that for each 
t*, there is a ti that precedes it. That is precisely what is re- 
quired for P KW Q in this case. 

In the two preceding examples, nonbasic states of affairs 
supervene upon unit sets of basic states of affairs, but in gen- 
eral nonbasic states of affairs will supervene upon multimem- 
bered sets of basic states of affairs with different dates. For 
example, consider another pair of switches Sl and S2 and lights 
Ll and L2. Suppose SI  controls Ll and s2 controls L2, and Sl  
and S2 operate independently of each other. Let PI be Sl's 
being closed at t i ,  P2 be Szls being closed at 4, Ql be 
LI's being on at t*,, and Qz be L2's being on at t*2. We 
would agree that S,'s being closed at tl and S2 at causes 
it to be the case that Ll is on at t*l and L2 at t*-,, i.e., 
(PI & P2)C(QI & QT). It cannot be required that both ti and 
t2 precede both t*, and t*^. It is enough for ti to precede 
t*, and t2 to precede t*-,. That is what (4.9) requires for 
(PI & PT) KÃ£ (Ql & Q2). In this case, Xn is {Q1,Q2} and Y is 
{P\,P2}. In some nearest -(PI & P2)-worlds PI will be false, 
and in others P2 will be false, but as PI and P2 are indepen- 
dent of each other, they will never both be false in such a 
world. Similarly, in some nearest -(PI & P2)-worlds Ql will 
be false, and in others Q2 will be false. PI and Ql are false in 
the same nearest -(PI & P2)- worlds, and P2 and Q2 are false 
in the same nearest -(PI & P2)-worlds. Thus, what (4.9) re- 
quires is that PI < Ql and P-, < Q2, i.e., tl < f*, and ^ < 
t*2. 

Next, let us turn to the logical properties of '<'. It is not 
transitive but the following theorem is easily proven: 
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(4.11) If (P -Ã Q) obtains at w and P <,,, Q and Q <u. R, 
then P <,,, R. 

Proof: Suppose (P -Ã̂  Q) obtains at w and P <,,, Q and 
Q <,,, R.  Suppose w*â‚¬M,,,(-P Then as (P -Ã Q) obtains 
at w, w*â‚¬Mw(-Q Suppose X C B,,, and X entails R. Then 
there are Xo, Y such that Xo C B,., and Y C B,., and X entails 
/\Xy and Xo entails R and Y entails Q and (VA)(VB)[if 
A,Bâ‚¬B, and Aâ‚¬ and BEY and A and B do not obtain 
at w* then B < A]. As P < Q, there are Yo, Z such that Yo 
C B,,, and Z C B,,, and Y entails AYo and Yo entails Q and 
Z entails P and (VA)(VB)[if A,Bâ‚¬B, and Aâ‚¬ and Bâ‚ 
and A and B do not obtain at w* then B < A]. As Q does 
not obtain at w*, there is an A in B,., such that Aâ‚¬ and 
A does not obtain at w*, so (VA)(VB)[if A,Bâ‚¬B, and Aâ‚¬ 
and BEZ and A and B do not obtain at w* then B < A]. 
Hence P <,,, R.  

We also get adjunctivity: 

(4.12) If P <,,, Q and P <,,, R then P <,., (Q & R). 

Proof: Suppose P <w Q and P <,,, R. Suppose w*EM,,,(-P) 
and X C B,,, and X entails (Q & R). Then X entails Q and 
X entails R ,  so there are XI C Bw, X2 C B,., such that X 
entails AX, and XI entails Q, and X entails AX2 and X2 
entails R, and there are Y ,  C B,,,, Yy C B,,, such that Yl entails 
P and Y2 entails P and (VA)(VB)[if A,Bâ‚¬B, and AEX, and 
BEYl and A and B do not obtain at w* then B < A] and 
(VA)(VB)[if A,Bâ‚¬ and Aâ‚¬ and BEY2 and A and B 
do not obtain at w* then B < A]. Let Xo = XI uX2. Then X 
entails X,, and Xo entails (Q & R). If there is a B in Y, such 
that for each C in Y2, B < C, then (VA)(VB)[if A,Bâ‚¬ 
and Aâ‚¬ and BEYl and A and B do not obtain at w* then 
B < A]. If instead there is no such B in Yl then (VA)(VB)[if 
A,Bâ‚¬B, and Aâ‚¬ and BEY2 and A and B do not obtain 
at w* then B < A]. So P <,., (Q & R). 

I have endorsed (C5) as my basic temporal condition on 
causation, but by virtue of the reflection principles (3.13) and 
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(3.14), we can obtain a stronger temporal condition: 

(4.13) If PCwQ then for each w* in A,,(P): ( 1 )  if P obtains 
at w*, then P <,,. Q; and (2) if P does not obtain at 

. w*, then P <,,. Q. 

Let us symbolize the consequent of (4.13) as rP Ã‡ Q'. Let 
(P << Q) be the state of affairs that obtains at a world w iff 
P <<,, Q, i.e., (P  << Q) = V{w P <<,, Q}. We immediately 
obtain from (4.11): 

(4.14) If (P  -Ã Q) obtains at w and P <<,, Q and 
Q Ã ‡ w R  then P <<,,,R. 

The adjunctivity of '<<' is not an immediate consequence of 
our earlier principles. In order to obtain adjunctivity we need 
both (4.12) and the following principle: 

(4.15) If P <,,Q and P <wR,  then P <,,, (Q v R ) .  

In order to obtain (4.15) we must make an additional as- 
sumption about basic states of affairs: 

(A2) If P,Qâ‚¬R and P entails Q and Y C Bw then 
(3X){X C B,, and X entails P and X entails AY and 
(Wo)[if Xo C B,, and X entails Xo and Xo entails AP 
then (3Yo)(Yo <= B,, and Y entails Yo and Xo entails AYo 
and Yo entails Q)]}. 

Less formally, if P entails Q and Q is supervenient upon Y, 
then P is supervenient upon some X entailing Y that is such 
that if P is also supervenient on some Xo logically weaker than 
X, then Q is supervenient on some Yo logically weaker than 
both Y and Xo. The rationale for this assumption is as follows. 
Suppose P entails Q and Q is supervenient on Y. We can al- 
ways strengthen Y to obtain a set X on which P is superven- 
ient. As we have seen, we cannot require minimality in the 
definition of supervenience, so Y and X may both contain ex- 
cess baggage, i.e., P and Q may also be supervenient on smaller 
sets. If we can trim excess baggage from X to yield a logically 
weaker set Xo upon which P is still supervenient, we should 
be able to trim the same excess baggage from Y to obtain a 
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weaker set Yo on which Q is still supervenient. That is just 
what (A2) tells us. 

Given (A2) we can prove (4.15). For this purpose we first 
need a lemma that we derive from (Al): 

(4.16) If X and Y are subsets of B., and X entails AY, then 
for each A in Y that does not obtain at a world w*, 
there is an A* in X such that A* s A and A* does 
not obtain at w*. 

Proof: Assume that X and Y are subsets of B,, and X en- 
tails AY. Suppose Aâ‚ and A does not obtain at w*. As 
AGX, X entails A, so by (Al), {A*l A*â‚ and A* ss A} 
entails A. As A does not obtain at w*, some member of 
{A* A*â‚ and A* s A} does not obtain at w*. 

We can now prove a stronger theorem that has (4.15) as an 
immediate consequence: 

(4.17) I f P  <,, Q then P <,, (Q v R). 

Proof: Suppose P <^ Q. Suppose w*â‚¬M,,(- and X C 
B,,, and X entails (Q v R). By (A2), we can strengthen X to 
X* in such a way that X* entails Q and X* entails AX and 
(i) (VXo)[if Xo C B,, and X* entails /\Xo and Xo entails (9 

then (SYo)(Yo C B., and X entails /\Yn and Xo entails AYo 
and Yo entails (Q v R))]. 

As P <,, Q ,  there is an X*n such that X*o C B,, and X* 
entails AX*o and X*o entails Q and there is a Y such that Y 
C B., and Y entails P and (VA)(VB)[if A,Bâ‚¬B and Aâ‚¬ 
and BEY and A and B do not obtain at w* then B < A]. 
Then by (i), there is a Y*o such that Y*o C B., and X entails 
AY*,, and X*o entails AY*,, and Y*o entails (Q v R). By 
(4.16), as X*o entails AY*o, for each A in Y*o that does not 
obtain at w*, there is an A* in Y*o such that A* s A and 
A* does not obtain at w*. Thus, (VA)(VB)[if A,Bâ‚¬ and 
Aâ‚¬Y and BEY and and A and B do not obtain at w* then 
B < A]. So P <., (Q v R). 

When P and Q are basic states of affairs, the requirement 
that if PCQ obtains at w then P <<,, Q should reduce to the 
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requirement that P < Q. That it does can be established as 
follows. First we prove: 

(4.18) If PEB. and w*â‚¬M.(-P then (3X)[X C B. and 
X entails -P and (VQ)(if Qâ‚ then Q sg P)]. 

Proof: Suppose PEB. and w*â‚¬Mw(-P As P is ba- 
sic, it is either of the form "x's being F at t1 (abbreviated: 
" [X.F.~]~)  or "Y*s containing all F's at t1 (abbreviated: 
^Enum(Y,F,t)l). 

Suppose P = rx,F,tl. As -P obtains at w*, either 
"x,-F,tl obtains at w* or x does not exist at t in w*. If the 
former, let X = {[x,-F,t]}. If the latter, choose G such that 
x is necessarily either G or non-G if x exists. Then for some 
Y and Z not containing x, Enum(Y,G,t) and Enum(Z,-G,t) 
obtain at w*, and these jointly entail -P. So let X = 

{Enum(Y,G,t) ,Enum(Z, -G,t)}. 
Suppose P = Enum(Y,F,t). As -P obtains at w*, there 

is an x not in Y such that [x,F,t] obtains at w*. Let X = 

{[x,F,tl}. 

We have as an immediate consequence of (4.18): 

(4.19) If P,Qâ‚¬ and w*â‚¬MJ- and P < Q, then 
P <<. Q. 

(4.10) and (4.19) together give us: 

(4.20) If P,Qâ‚¬ and (P -Ã Q) obtains at w, then 
P <<.QiffP < Q. 

5 .  The Analysis 
(C1)-(C5) exhaust the conditions for which I feel we can 

give an adequate intuitive defense by appealing to simple cases 
of causation. They jointly imply that if P causes Q at w then 
the following condition holds: 

(5.1) P and Q obtain at w and (P -Ã  ̂Q) and P Ã‡ Q 

Furthermore, this condition satisfies (C1)-(C5) (putting it in 
place of "PCQ1), so it follows that this is the strongest con- 
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dition that (C1)-(C5) imply causation to entail. I propose this 
as our analysis of causation: 

Analysis: PCQ = [P & Q & (P -w Q )  & (P << Q)] .  

On the basis of this analysis, (C1)-(C5) become theorems. In 
addition, causation is provably transitive and adjunctive: 

(5.2) [PCQ & QCR] -Ã PCR. 

(5.3)  [PCQ & PCR] -  ̂PC(Q & R).  

For basic states of affairs, the analysis reduces to the simpler: 

(5.4) If P and Q are basic states of affairs then: 
PCQ = [ P & Q & ( P - w  Q )  & ( P  < Q ) ] .  

Thus, we have an analysis of causation from which its normal 
logical properties follow in a natural way without any a d  hoc 
maneuvering. I take this to constitute strong confirmation for 
the analysis. It also constitutes a further illustration of the use- 
fulness of possible worlds in philosophical analysis. 



Formal Semantics 

1. Introduction 

The semantical theories we have been considering thus far 
in this book are realistic semantical theories. That is, they 
consist of analyses framed directly in terms of possible worlds. 
Formal semantical theories have also played an important role 
in contemporary philosophical logic. Various formal seman- 
tics have been proposed for modal logic, for counterfactuals, 
for indexicals and token reflexives, and so on. But it has never 
been entirely clear what the point of such a formal semantics 
is. It is generally supposed that by constructing a formal se- 
mantics for a logical concept, one has thereby analyzed it or 
in some sense elucidated it. But it is not at all obvious just 
how a formal semantics is supposed to accomplish this. The 
purpose of this chapter is to determine when a formal seman- 
tics is reasonable, and what philosophical conclusions we can 
draw from it. 

To appreciate the depth of our problem, let us consider a 
concrete example of a formal semantics-that designed for 
non-quantificational modal logic. As always in formal se- 
mantics, we begin by constructing a logical notation. For this 
purpose we begin with a set At of atomic formulas, and the 
logical constants 1, A, and 0. We define v, +, <->, and 0 
in the usual ways. We define an assignment to be a function 
G mapping At into {0,1}. A model is an ordered pair (G,K) 
where K is a set of assignments and G E K .  We define truth 
in a model recursively as follows: 

(1.1) Definition of truth in (G,K):  
(a) if pEAt then p is true in (G,K) iff G ( p )  = 1; 

' Non-quantificational modal logic is what would more conventionally be 
called 'propositional modal logic'. 
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(b) 7 p  is true in (G,K) iff p is not true in (G,K); 
(C) ( p ~ q )  is true in (G,K) iff p and 4 are both true in 

(G.K); 
(d) Up is true in (G,K) iff p is true in every (H,K) for 

HEK.  

A formula is valid iff it is true in every model. 
The preceding is the simplest semantics for non-quantifi- 

cational modal logic. The set of formulas valid on this se- 
mantics comprises S5. S5 can be axiomatized as follows: 

(1.2) Axioms and Rules for S5: 
(Al) all truth-functionally valid formulas 
('42) UP P 
043) O(p -> 9) -> (UP -  ̂W 
(A4) OUp -> Up 
(Rl) modus ponens: If t-p and t-(p + q) then t-q. 
(R2) necessitation: If t-p then 

S5 is generally favored as the appropriate logic when is 
taken to symbolize logical necessity, and we have seen that it 
can be justified by appealing to the characterization of neces- 
sity in terms of possible worlds. But there are other respected 
non-quantificational modal logics, principally M and S4. S4 
results from replacing (A4) by the weaker axiom 

and M is obtained by deleting (A4) from S5 altogether. Formal 
semantics have also been constructed for M and S4. For this 
purpose we revise the definition of a model, taking a model 
to be a triple (G,K,R) where K is a set of assignments, G E K ,  
and R is a relation defined on K,  i.e., R C KXK.  R is called 
'the accessibility relation'. Truth in a model is defined as be- 
fore with the exception of the clause for D: 

(1.3) Definition of truth in (G,K,R): 
(a) if pEAt then p is true in (G,K,R) iff G(p) = 1; 
(b) l p  is true in (G,K,R) iff p is not true in (G,K,R); 

A different axiomatization of S5 was given in Chapter Three. 
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(c) ( p ~ q )  is true in (G,K,R) iff p and q  are both true 
in (G,K,R); 

(d) Dp is true in (G,K,R) iff p is true in every (H,K,R) 
such that HRG. 

In other words, U p  is true in (G,K,R) iff p  is true in every 
(H,K,R) where H is accessible from G .  We get different modal 
logics by making different assumptions about R .  (G,K,R) is 
an M-model iff R is reflexive; an S4-model iff R is transitive 
and reflexive; and an S5-model iff R is reflexive, transitive, 
and symmetric (i.e., an equivalence relation). A formula is 
M-valid iff it is true in every M-model, S4-valid iff it is true 
in every S4-model, and S5-valid iff it is true in every S5- 
model. It then turns out that a formula is a theorem of M iff 
it is M-valid, a theorem of S4 iff it is S4-valid, and a theorem 
of S5 iff it is S5-valid. 

Kripke's discovery of these formal semantics for M, S4, and 
S5 is generally considered one of the great achievements of 
modem logic. That achievement made modal logic respectable 
for the first time in the eyes of most philosophers. Prior to 
1959, modal logic was viewed with considerable suspicion and 
most philosophers were loathe to use it in doing serious phi- 
losophy. Since 1959, modal logic has become a standard tool 
of philosophy and has been embraced by all but a few die- 
hards. Just how did the discovery of these formal semantics 
accomplish this? 

These formal semantics are labeled 'possible worlds se- 
mantics'. In (G,K,R), K is supposed to represent the set of all 
possible worlds, and G is supposed to represent the actual world. 
Necessity is then identified with 'truth at all possible worlds', 
and we get clause (d) of either (1.1) or (1.3). It seems likely 
that in his original paper Kripke intended this to be no more 
than a heuristic aid in understanding the formal semantics, but 
it is now generally felt that these formal semantics represent 
the notion of truth at all possible worlds in some very literal 
sense. There is, however, considerable difficulty in under- 
standing the kind of representation involved. First, what is the 
accessibility relation supposed to be doing? As far as I can 
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see, it is no more than a technical trick to enable us to get M 
and S4. No one has ever given a plausible account of its in- 
tuitive significance. Perhaps what this shows is that we should 
eschew the accessibility relation, embracing the formal se- 
mantics based upon the simpler models (G,K)  and resting con- 
tent with S5. But it is still far from clear how these models 
represent truth at all possible worlds. For example, (G,{G}) is 
a model, but how can this represent truth at all possible worlds? 
It is surely a necessary truth that there are more possible worlds 
than the actual world. This might suggest that instead of al- 
lowing K to be just any set of assignments, we should require 
K to be the set of all assignments. But it turns out that if we 
make such a requirement, we no longer get S5. Instead we 
get a totally unreasonable modal logic. For example, if p is 
atomic, one of the theorems of this modal logic is Op (but 
this need not be a theorem if p is not a t ~ m i c ) . ~  The upshot of 
this is that we seem unable, at this point, to give any simple 
answer to the question of how this formal semantics represents 
the notion of truth at all possible worlds, and the philosophical 
significance of the semantics is left in doubt. Perhaps all the 
semantics amounts to is a mathematical characterization of the 
theorems of the modal logic, devoid of philosophical signif- 
icance. But if that is true, logicians have been pulling the wool 
over the eyes of their colleagues for years by convincing them 
they were doing something philosophically important. As I am 
still doing logic, the reader will surmise that I believe there 
is more to formal semantics than the skeptical view I have just 
suggested, but the true significance of formal semantics in- 
volves a long story. 

I was recently surprised to discover that there are logicians 
who do not believe that formal semantics stands in need of 
any justification or foundations. They regard formal semantics 
as a "philosophical accomplishment in its own right". Such 
a view strikes me as absurd. One thing that has become ap- 
parent in recent years is that we can construct formal seman- 

This modal logic was endorsed by Carnap [1947], but it has fallen into 
general disrepute. 
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tics to yield virtually any logical theory, regardless of whether 
the logical theory has anything to antecedently recommend it. 
Obviously, the existence of the semantics does not automat- 
ically lend the theory the respectability it originally lacked. 
The semantics can only do that if it is itself, in some sense, 
reasonable. It is precisely the criterion for the reasonableness 
of a semantics that this chapter aims to uncover. 

2. Logical Validity 

Let us begin by asking the most basic question of all re- 
garding the nature of formal semantics. When we do formal 
semantics, we construct systems of logical notation and then 
define the notion of logical validity for formulas of our no- 
tation. What is the significance of logical validity supposed to 
be? I do not think there is any single right answer to this ques- 
tion. One could be doing different things in constructing se- 
mantical theories, and accordingly, logical validity may differ 
in significance from one semantical theory to another. The 
simplest possibility is that our logical notation may allow us 
to symbolize various propositional forms. For example, the 
propositions (9 v -9) and (0 v -0) have the same form, 
which we might describe as (X v -X). Formally, propositional 
forms can be viewed as functions from propositional constit- 
uents to propositions. For example, we can identify the form 
(X v -X) with that function on propositions that assigns to a 
proposition <p the proposition (tp v -q). A proposition has a 
certain form iff it is in the range of that form. If formulas of 
our logical notation are taken to symbolize propositional forms, 
a formula being logically valid might be intended to capture 
the notion of every proposition of that form being necessarily 
true. This is probably the simplest and most obvious notion 
of logical validity.4 

A second possibility is that our logical notation might sym- 
bolize statemental forms rather than propositional forms. These 
are functions from statemental constituents to statements. Then 

I proposed this as an analysis of logical validity in Pollock [1967a], 
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logical validity might be intended to capture the notion of every 
statement of that form being (either internally or externally) 
necessary. A third possibility is that our logical notation might 
be intended to symbolize the forms of states of affairs, and a 
formula would be logically valid iff every state of affairs of 
that form is necessary. A fourth possibility is that our logical 
notation might symbolize sentence forms. In this case, a for- 
mula's being valid might be intended to capture the notion of 
a formula's being such that every sentence of that form is an- 
alytic (or internally necessary, or externally necessary, or weakly 
analytic). It is apparent that formal semantics and the resulting 
logical theories can be intended to serve different purposes, 
and it is important to distinguish between different kinds of 
semantical theories in terms of the purposes they are intended 
to serve. 

2.1 Propositional Logics 

Propositional logics are logics whose formulas are intended 
to express the forms of propositions. The language of a prop- 
ositional logic will consist of an ordered pair (F,IT) where F 
is the set of formulas and IT is a function that assigns to each 
p in F the propositional form ~ ( p )  that p expresses. Propo- 
sitional forms are functions, and the different argument places 
in a propositional form will typically have different domains. 
For example, in the first-order propositional form (X:y), the 
instances of X are one-place concepts and the instances of y 
are propositional designators. These different domains are made 
up of different classes of propositions and propositional con- 
stituents. For each such class we require our language to con- 
tain a corresponding class of variables. For example, the pred- 
icate calculus (construed as a propositional logic) contains 
sentence letters that serve as variables ranging over proposi- 
tions, n-place relation symbols that serve as variables ranging 
over n-place concepts, and individual constants that serve as 
variables ranging over propositional designators. These vari- 
ables are, somewhat perversely, called 'nonlogical constants'. 
We require each formula p to contain a nonlogical constant of 
the appropriate type for each argument place of v(p). Thus, 
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for example, r(Ax)(Fx + Fa)' expresses the propositional form 
(Vx)((X:x) + (X:y)) where instances of 'X are one-place con- 
cepts and instances of y are propositional designators. As in 
the propositional and predicate calculi, our languages are gen- 
erally constructed so that ~ ( p )  can be read off from the syn- 
tactic structure of p .  Frequently F will be defined recursively 
by reference to a larger class of expressions not all of which 
express propositional forms. For example, we have the dis- 
tinction between open formulas and closed formulas in first- 
order logic. 

The range of ~ ( p )  is the set of propositions of the form 
expressed by p .  We can define different concepts of validity 
in each of the following ways: 

(2.1) A formula p is (1) validN, (2) validA, or (3) validT iff 
for every proposition <p of the form expressed by p, 
(p is (1) necessary, (2) a priori, or (3) true. 

We obtain three different kinds of propositional logics cor- 
responding to the three different kinds of validity. It is inter- 
esting to note that for most classical propositional logics, such 
as the truth-functional and predicate calculi, the three kinds of 
validity appear to coincide, and hence logicians have not found 
it necessary to clearly distinguish between them. In higher- 
order logic, however, there is the distinct possibility that 
validityN and validityA will diverge with respect to formulas 
expressing principles of elementary number theory (which might 
be necessary but not a priori). And in first-order modal logic 
there is only one proposition of the form expressed by the 
formula "l(V&O^(Vy) y = x1 (which says that there do 
not exist k contingent objects). Thus, this formula is validT iff 
that proposition is true. Hence such a formula can be validT 
without being validN or valid*, This suggests that for most pur- 
poses validityN is the most interesting of these three concepts. 

A fruitful reformulation of our concepts of validity proceeds 
in terms of interpretations of a language. These are functions 
that assign propositions to formulas in such a way that the 
proposition assigned is always of the form expressed by the 
formula. Interpretations accomplish this by assigning propo- 
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sitions and propositional constituents to the nonlogical con- 
stants in the formula. Let us define an interpretation to be any 
function that assigns to each nonlogical constant a proposition 
or propositional constituent of the appropriate type. For ex- 
ample, in the predicate calculus an interpretation will assign 
n-ary concepts to n-place relation symbols, propositional des- 
ignators to individual constants, and so on. Given an inter- 
pretation p  and a formula p  whose nonlogical constants are 
c , ,  . . . ,cn, the proposition assigned to p  by p  (symbolized: 
' p (p ) ' )  is n ( p ) ( p ( c I ) , .  . . ,p (c , , ) ) .  In other words, p ( p )  is the 
proposition that results from applying the propositional form 
expressed by p  to the interpretation of the nonlogical constants 
in p. 

Given a characterization of the set of all interpretations and 
a specification of what propositions each interpretation assigns 
to each formula, we can define IT in terms of interpretations. 
~ ( p )  is the function that determines the value of p ( p )  given 
the value of p(c)  for each nonlogical constant c  occurring in 
p ,  so: 

(2 .2 )  If pEF and c i , .  . . ,cn are the nonlogical constants oc- 
curring in p ,  listed in order of their initial occurrence, 
then T ( P )  = {Ã‡p(ci),...,p(cn)),p(p)) u. is an 
interpretation}. 

This is the way we will normally define I T .  When IT is defined 
in this way, interpretations satisfy two conditions that will be 
of importance: 

(2 .3 )  If p. is an interpretation, then for each formulap, p ( p )  
is of the form ~ ( p ) .  

( 2 . 4 )  If ip is a proposition of the form expressed by p ,  then 
there is an interpretation p  such that ip = p ( p ) .  

Given these two principles, our concepts of validity can be 
reformulated in terms of interpretations: 

(2 .5 )  A formula p  is (1) valid,,,, ( 2 )  valid,, or ( 3 )  validr iff 
for every interpretation p ,  p ( p )  is ( 1 )  necessary, ( 2 )  
a priori, or ( 3 )  true. 
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With the help of the notion of an interpretation, we can also 
define consistency and logical consequence: 

(2.6) If X is a set of formulas: 
(a) X is consistentN iff there is an interpretation p. such 

that O X ( f o r  each q in X, p(q) is true); 
(b) X is consistentA iff there is an interpretation p. such 

that there is no a priori argument allowing us to 
derive a contradiction from the set of propositions 
{p.(q)l oÂ£X} 

(c) X is consistentT iff there is an interpretation p. such 
that for each q in X, p(q) is true. 

(2.7) If X is a set of formulas and p a formula: 
(a) X eN p iff for every interpretation p., Ux,Jif for 

each q in X, p(q) is true, then p.(p) is true]; 
(b) X iff for every interpretation p., there is an 

a priori argument allowing us to derive p(p) from 
{^)lq=}; 

(c) X 9 T p  iff for every interpretation p., if for each 
q in X ,  ~ ( q )  is true, then p ( p )  is true. 

2.2 Statemental Logics 

Statemental logics differ from propositional logics in that 
their formulas are intended to express the forms of statements, 
these being defined as functions from statements and state- 
mental constituents to statements. The language of a state- 
mental logic will consist of an ordered pair (F,cr) where F is 
the set of formulas and cr is a function that assigns to each 
formula p the statemental form u(p) that p expresses. In light 
of the distinction between internal and external necessity for 
statements, we can define four kinds of validity for statemen- 
tal logics: 

(2.8) A formula p is (1) valid,,,, (2) valid,, (3) valid*, or (4) 
validr iff for every statement 4 of the form expressed 
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by p ,  $ is (1) externally necessary, (2) internally nec- 
essary, (3) a priori, or (4) true. 

We can define the notion of an interpretation as we did for 
propositional logics and use that to define consistencyN, 
consistencyA, consistency;-, @N, @A, and er. There is, how- 
ever, no obvious way to define consistency/ or @/. 

2.3 SOA Logics 

SOA logics are logics of states of affairs. We would like to 
develop SOA logics on analogy to propositional and state- 
mental logics, but there is an immediate obstacle to doing so. 
Whereas the notion of the form of a proposition or of a state- 
ment makes literal sense because of their having structure and 
constituents, we cannot make analogous sense of the notion 
of the form of a state of affairs. This is particularly true in 
light of our taking equivalent states of affairs to be identical. 
Instead, in defining the notion of the form of a state of affairs, 
we must be guided by our desire to interpret existing logical 
theories in terms of states of affairs. For this purpose we will 
presumably want closed formulas to express states of affairs, 
predicates and open formulas to express properties, and in- 
dividual constants to express (or denote) individuals. This sug- 
gests defining an SOA form to be a function from individuals, 
properties, and states of affairs, to states of affairs. The lan- 
guage of an SOA logic will then consist of an ordered pair 
(F,v) where F is the set of (closed) formulas and v is a func- 
tion that assigns to each p in F the SOA form v(p) that p 
expresses. As states of affairs are not (except indirectly) ob- 
jects of belief, apriority is inapplicable to states of affairs. We 
have only one concept of necessity for states of affairs, so we 
obtain just two concepts of validity for SOA logics: 

(2.9) A formula p is (1) validN or (2) valido iff for every 
state of affairs S of the form expressed by p ,  S (1) is 
necessary or (2) obtains. 

We can define the notion of an interpretation as before and 
use that to define consistencyN, consistencyo, I+,,,, and e o .  
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2.4 Linguistic Logics 

In motivating first-order logic, it is not uncommon to find 
logicians telling us, on the one hand, that formulas express 
propositions and, on the other hand, that individual constants 
express proper names. Such an account is incoherent. If for- 
mulas express propositions, then individual constants, as parts 
of formulas, must express propositional constituents. Proper 
names are constituents of sentences-not propositions. What 
is happening here is that two kinds of logics-propositional 
logics and linguistic logics-are being confused with each other. 
Linguistic logics are interestingly different from propositional, 
statemental, and SOA logics. The formulas of a linguistic logic 
express the forms of sentences of a language, not in the sense 
of mirroring their syntactic structure, but in the sense of ex- 
pressing what I will call their semantical form. Typically, sen- 
tences are built out of smaller meaningful parts, and the 
5-intension of the entire sentence is a function of the S-, 
D-, and A-intensions of those parts. This is the doctrine of 
semantical compo~itionality.~ The function determining the 
S-intension of the sentence on the basis of the intensions of 
its parts is its semantical form. Sentences with different parts 
may have the same semantical form. For example, every sen- 
tence of the syntactic form t~ and q7 has the semantical form 
K that assigns to the S-intensions of sentences p and q the S- 
intension of their conjunction rp and q7.  The semantical form 
K can be defined explicitly as follows: 

(2.10) If A, and A2 are S-intensions, K(Ai,A2) is that S- 
intension A such that for any assignment TT of values 
to the pragmatic parameters, A(TT) = (A,(TT) & A*(TT)). 

In general, a semantical form is any function from S-, D-, and 
A-intensions to S-intensions. The language of a linguistic logic 
is then an ordered pair (F,A) where F is the set of formulas 
and A is a function that assigns to each formula p the se- 
mantical form A(p) expressed by p. The range of A(p) is a set 

For an extended discussion of compositionality, see Pollock [1982], 262- 
280. 
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of 5-intensions-functions from pragmatic parameters to 
statements. These are the 5-intensions having the form ex- 
pressed by p. On analogy to a statement's being the sense of 
a sentence (relative to a particular assignment of values to the 
pragmatic parameters), let us say that a statement d; is a pos- 
sible sense of a formula p iff d; is a possible value for one of 
the 5-intensions having the form expressed by p ,  i.e., iff 
d;Grange(U(range(A(p)))). We can then define the following 
notions of validity for linguistic logics: 

(2.1 1) A formula p is (1) validN, (2) validI, (3) validA, or 
(4) validT iff for every statement d; that is a possible 
sense of p ,  d; is (1) externally necessary, (2) inter- 
nally necessary, (3) a priori, or (4) true. 

Regarding languages as abstract entities that exist neces- 
sarily, and assuming that every semantical form can be pos- 
sessed by some sentence in some language, we can relate our 
notions of validity to languages as follows: 

(2.12) A formula p is (1) validN, (2) validI, (3) validA, or 
(4) validT iff for every language L and sentence q of 
L, if q has the semantical form \{p) then every state- 
ment expressible by q is (1) externally necessary, (2) 
internally necessary, (3) a priori, or (4) true;6 i.e., 
q is (1) externally necessary, (2) internally neces- 
sary, (3) analytic, or (4) weakly analytic. 

These four notions of validity are interestingly different. For 
example, if A(p) is the semantical form of the sentence 'I ex- 
ist', then p is validT but not validN, valid,, or validA. 

There is another way of formulating our concepts of validity 
for linguistic logics. This is to employ a concept of an inter- 
pretation akin to that employed in talking about propositional, 
statemental, and SOA logics. For linguistic logics, an inter- 
pretation will assign intensions (5-, A-, or D-) to the nonlog- 
ical constants of a formula, and then will assign an 5-intension 
to the entire formula in terms of the intensions assigned to the 

$ is expressible by q iff $ is in the range of the S-intension of q. 

183 
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nonlogical constants. If u, is an interpretation and p is a for- 
mula whose nonlogical constants are e, ,  . . . ,cn, then ^(p) = 

A(p)(u,(c,,... ,^)I. 
If p. is an interpretation and p a formula, p(p) is an S-in- 

tension-a function from pragmatic parameters to statements. 
Taken together, an interpretation p. and an assignment IT of 
values to the pragmatic parameters will determine a statement 
corresponding to each formula-the statement p.(p)('rr). For 
notational convenience, let us write this as "(p./~i)(p)"'. We 
can characterize our four notions of validity for linguistic log- 
ics as follows: 

(2.13) A formula p is (1) validN, (2) valid,, (3) validA, or 
(4) validr iff for every interpretation p. and 
assignment IT of values to the pragmatic 
parameters,(p./~~)(p) is (1) externally necessary, (2) 
internally necessary, (3) a priori, or (4) true. 

We can define notions of consistency and logical consequence 
corresponding to validityN, validityA, and validityr just as we 
did for propositional, statemental, and SOA logics. 

3. Formal Semantical Theories 

Minimally, a formal semantics for a logical theory is a 
mathematical (e.g., a set-theoretic) characterization of the set 
of valid formulas for that theory. The minimal purpose of such 
a semantics is to make the study of validity amenable to a 
precise mathematical investigation by characterizing it in a 
purely mathematical way.' Frequently, however, a formal se- 
mantics is supposed to do more. It is often thought that a for- 
mal semantics gives us insight into the logical concepts them- 

' An even weaker purpose for a formal semantics is to give a character- 
ization of the set of provable formulas of some axiomatized logical theory. 
However, such theories are generally intended to capture the set of valid 
formulas in one of the above senses, and are only really interesting insofar 
as they do so. Thus, for the most part the pursuit of formal semantics for 
such theories is only of interest when it coincides with what is described here 
as the minimal purpose of a formal semantics. 
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selves, or even that the formal semantics provides us with an 
analysis of the logical concepts. This claim is particularly 
prevalent in connection with so-called "possible worlds se- 
mantics". We have already seen reason to be suspicious of 
the heuristic basis of the standard possible worlds semantics 
for modal logic. It is not at all obvious initially that it will 
yield the right set of valid formulas. But even if it does, why 
should we think that this sort of semantics does anything be- 
yond characterizing validity mathematically? Why should we 
suppose that there is any sense in which it provides us with 
an actual analysis of our logical concepts? 

In order to answer these questions, I shall describe the way 
in which I think possible worlds semantics ought to work. It 
is an open question whether this is really what is going through 
the minds of logicians who constructed such semantics, but 
many of the semantics that have been constructed will meet 
the conditions imposed below. 

Between propositional, statemental, SOA, and linguistic 
logics, we have thirteen different kinds of validity and cor- 
respondingly thirteen different kinds of logic. Possible worlds 
semantics may differ for each kind of logic, and may not be 
amenable to all. We cannot possibly discuss all of these kinds 
of logic at this time, so I will confine my attention to validityN 
in each case. ValidityN for propositional, statemental, and SOA 
logics is basically similar, enabling us to discuss possible worlds 
semantics for all three kinds of logic at once. Possible worlds 
semantics for linguistic logics, however, will function in a more 
complicated way, and will be discussed separately. 

3.1 Propositional, Statemental, and SOA Logics 

Suppose we have a propositional, statemental, or SOA logic 
whose language is (F,p). A formula p is validN iff it is "nec- 
essarily true under every interpretation", i.e., for every inter- 
pretation p, p ( p )  is (externally) necessary. A possible worlds 
semantics seeks to capture this characterization of validity by 
defining the notions of a model and truth in a model. Models 
are set-theoretic structures, and truth in a model is a set-the- 
oretic concept. Models are thought of as simultaneously in- 
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terpreting the language and describing a possible world at which 
to evaluate the truth of the proposition, statement, or state of 
affairs resulting from the interpretation. The precise definition 
of 'model' will depend upon what logical theory is being in- 
vestigated, but however it is defined, we will arrive at a def- 
inition of what it is for a formula to be true in a model. If a 
formula p is true in a model M, M is said to be a model of p .  
We define semantical validity (in constrast to validity,,,) as 
follows: 

(3.1) p (p is semantically valid) iff every model is a model 
of p .  

Our semantics is adequate iff validityN and semantical validity 
coincide for all formulas of the language. 

A formal semantics is also used to study logical conse- 
quence. To this end we define a model of a set of formulas 
to be any model that is a model of all the formulas in the set. 
If r is a set of formulas, we define: 

(3.2) F is satisfiable iff F has at least one model. 

(3.3) F [= p (F semantically implies p)  iff every model of 
F is a model of p .  

Let us say that our semantics is strongly adequate just in case 
logical consequence and semantical implication coincide, i.e., 
for any formula p and set F of formulas, F t^yp iff F [= p .  
Equivalently, for a language containing negation: 

(3.4) A semantics is strongly adequate iff for any set F of 
formulas, F is satisfiable iff F is consistentu. 

Trivially: 

(3.5) If a semantics is strongly adequate then it is adequate. 

A semantics should be at least adequate, and preferably strongly 
adequate. How does the construction of a possible worlds se- 
mantics ensure this? 

The standard view of possible worlds semantics is that models 
are formal surrogates of possible worlds, but that appears to 
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be a mistake. Instead, a model should be regarded as a formal 
surrogate simultaneously of an interpretation and a possible 
world. It takes both to yield a truth value for a formula. Let 
us define the surrogate relation as follows: 

(3.6) M == (w,p) iff M is a model and w is a possible world 
and p is an interpretation and for every formula p ,  M 
is a model of p iff p(p) is true at w. 

Thus, truth in a model can be taken to correspond to truth 
under an interpretation at a possible world. A reasonable se- 
mantics should satisfy the following conditions: 

(Al) For each possible world w and interpretation p ,  there 
is a model M such that M = (w,p). 

(A2) For each model M there is an interpretation p and pos- 
sible world w such that M == (w,p). 

The following theorem might be regarded as The Fundamental 
Theorem of Possible Worlds Semantics: 

(3.7) If our language contains negation, a semantics for it 
is strongly adequate iff (Al) and (A2) hold. 

Proof: Suppose (Al)  and (A2) hold, and F is a set of 
formulas. By (Al), if F is consistentN then F is satisfiable; 
and by (A2), if F is satisfiable then F is consistentN. So by 
(3.4), the semantics is strongly adequate. 

Conversely, suppose (Al) fails; i.e., for some (w,p), there 
is no model M such that M = (w,p). Let F = {PI p(p) is 
true at w}. For each formula p ,  either p or 7p is in F. Thus 
if there is a model M of F, F = {pi p is true in M}, and 
hence M = (w, p). Thus F has no model, i .e., F is unsatisfi- 
able. But for each p in F, p(p) is true in w, so O n , r ( f ~ r  
each p in F, p(p) is true), i.e., F is consistentN. Thus by 
(3.5), the semantics is not strongly adequate. 

Suppose instead that (A2) fails, i.e., there is a model M 
for which there is no (w,p) such that M = (W,IJL). Let F = 

p is true in M}. If there is a (w,p) such that for each p 
in F, p(p) is true at w, then M = (w,p) (because for each 
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p ,  either p or l p  is in I?). Thus there is no such (w,p). 
Hence for each p ,  there is no world w such that each p(p) 
for p in r is true at w. That is, for each interpretation p, 
-Opxr(for eachp in F, p(p) is true), i.e., T is inconsistentN. 
So r is satisfiable but inconsistentN, and hence by ( 3 . 3 ,  the 
semantics is not strongly adequate. 

Theorem (3.7) provides the cornerstone for possible worlds 
semantics. 

If our concern is just with adequacy rather than strong ad- 
equacy, we can make do with a weaker principle than (A2): 

(A3) For each formula p, if p is satisfiable then there is an 
interpretation p and possible world w such that p(p) 
is true at w. 

We easily prove: 

(3.8) If our language contains negation and (Al)  and (A3) 
hold then our semantics is adequate. 

We will establish below that (Al)  and either (A2) or (A3) 
are true of the standard formal semantics for most popular log- 
ical theories. It follows that those semantics do succeed in 
characterizing validity. But what can be made of the claim 
that possible worlds semantics do more than just characterize 
validity? For example, suppose we have a semantics for a lan- 
guage containing a subjunctive conditional '>'. Is there any 
sense in which the semantics can be regarded as providing an 
analysis of the conditional? There are different senses of 'anal- 
ysis', but I would propose that the sense germane to a logical 
operator like '>' is: 

(3.9) An analysis of '>' is a statement of truth conditions 
for propositions (or statements, or states of affairs) of 
the form (<p > 0) in terms of the truth conditions for 
(p and the truth conditions for 0. 

Such a statement of truth conditions for a proposition 
((p > 0) will have the form 



3. Formal Semantical Theories 

(3.10) (Vip)(VO)(Vw)[if w is a possible world then (ip > 0) 
is true at w iff R(tp,O,w)] 

where rR(if,O,w)l expresses a relation between ip and 0 that 
we already understand. Now suppose we construct a logical 
theory whose language (F,K) enables us to express the prop- 
ositional form (or statemental form, or SOA form) (X > Y). 
That is, there is a formula p, in F such that K(P>) = 

(X > Y). Suppose further that we have a strongly adequate 
semantics for this language. By theorem (3.7), (Al) and (A2) 
hold, and (Al) and (A2) jointly imply: 

(3.11) (Vip)(VO)(Vw)[if w is a possible world then (cp > 0) 
is true at w iff there is an interpretation p and model 
M such that p(p>) = (ip > 0) and p, is true in M 
and M == (w , p)] . 

(3.11) appears to be an analysis of the form of (3.10). Thus, 
it appears that our formal semantics provides us with an anal- 
ysis of '>'. However, this analysis will be circular if the sur- 
rogate relation ' == ' is defined as in (3.6). In order to generate 
a noncircular analysis from (3.1 l),  we must have an alterna- 
tive characterization of the surrogate relation. Such a char- 
acterization of the surrogate relation is not part of the formal 
semantics, although it seems likely that the inventors of a for- 
mal semantics generally have a characterization of the surro- 
gate relation at least vaguely in mind as a heuristic guide in 
the construction of the semantics. 

Once we have coupled the formal semantics with an inde- 
pendent characterization of the surrogate relation, we are no 
longer doing formal semantics. We have, in effect, turned our 
formal semantics into a realistic semantics. For example, sup- 
pose our formal semantics for '>' proceeds in terms of models 
of the form (G,K,R) where K is a set of valuations, G E K ,  and 
R is a ternary relation between members of K. It will normally 
be explained that R represents the "nearness" relation be- 
tween possible worlds, however that is spelled out (e.g., in 
terms of minimal change, or in terms of comparative similar- 
ity). The effect of this is to turn (3.11) into an analysis of 



VI. Formal Semantics 

counterfactuals in terms of the nearness relation, and hence is 
equivalent to the realistic semantics for counterfactuals based 
upon the same choice of the nearness relation. Thus, I think 
it must be concluded that it is at least an exaggeration to claim 
that formal semantics provides us with analyses of logical con- 
cepts. Formal semantics might provide useful tools for the 
construction of realistic semantics, but they appear to do little 
more. 

3.2 Linguistic Logics 

Possible worlds semantics for linguistic logics also proceed 
by defining a set of models and a notion of truth in a model. 
The models for linguistic logics may, however, be more com- 
plicated than those for propositional, statemental, and SOA 
logics. In the latter logics, formulas are evaluated in terms of 
just two parameters-an interpretation p and a world w. Thus, 
models are formal surrogates for pairs (w,^}.  But in order to 
assign a truth value to a formula of a linguistic logic, we need 
a third bit of information. An interpretation p only provides 
us with an S-intension for p .  In order to evaluate p at a world 
w, we must also have an assignment TT of values to the prag- 
matic parameters so that we can obtain a particular statement 
from the S-intension of p. Thus, models in linguistic logics 
become formal surrogates for the ordered triples (w, (JL,TT). 

Linguistic logics constitute a relatively new subject matter 
and have not been studied with any generality. Van Fraassen 
[I9771 has examined a very restricted class of such logics in 
which the only pragmatic parameter is the possible world at 
which a statement is made. Kaplan ([I9761 and [1979]) has 
investigated a linguistic logic with a somewhat more liberal 
class of pragmatic parameters. Some of the work on tense logic 
could be interpreted as dealing with linguistic logics. But little 
work has been done on the general nature of linguistic logics. 
We can, however, modify the results of section 3.1 to apply 
to linguistic logics. As before, we define: 

(3.12) bp iff p is true in every model. 
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(3.13) A semantics is adequate iff for every formula p ,  p 
is validN iff h= p. 

(3.14) If I' is a set of formulas, M is a model of F iff every 
member of F is true in M. 

(3.15) F is satisfiable iff F has a model. 

(3.16) If p is a formula and F a set of formulas, F \= p iff 
every model of F is a model of p .  

(3.17) A semantics is strongly adequate iff for every for- 
mula p and set F of formulas, F % p iff F [= p. 

We can try to prove the adequacy of semantics for linguistic 
logics by proceeding much as we did for propositional and 
statemental logics. Let us define: 

(3.18) M == (w,p,,ir) iff M is a model and w is a possible 
world and p. is an interpretation and IT is an assign- 
ment of values to the pragmatic parameters and for 
each formula p ,  p is true in M iff (p./r)(p) is true at 
w. 

If our semantics is reasonable, we should have both: 

(AL1) For every possible world w ,  interpretation p., and 
assignment IT of values to the pragmatic parameters, 
there is a model M such that M == (w,u.,v). 

(AL2) For every model M ,  there is a possible world w, 
interpretation p., and assignment IT of values to the 
pragmatic parameters such that M == (w,k,'n}. 

As before: 

(3.19) If our languages contain negation, a semantics for it 
is strongly adequate iff (AL1) and (AL2) hold. 

Most standard logical theories can be regarded as linguistic 
logics as well as propositional, statemental, or SOA logics, 
and their adequacy or strong adequacy as a linguistic logic 
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often goes hand-in-hand with their adequacy or strong ade- 
quacy as a statemental logic. Let us define: 

(3.20) If ( F , u )  is a statemental logic and (F,A) is a linguistic 
logic with the same set of formulas, they agree iff 
for every p in F: 
(a) for each interpretation p. for ( F p )  there is an 

interpretation q for (F,A) and a pragmatic as- 
signment IT such that p ( ~ )  = ( q / ~ ) ( p ) ;  and 

(b) for each interpretation q for (F,A) and pragmatic 
assignment IT there is an interpretation p. for ( F p )  
such that (i(p) = (q/'rr)(p). 

Roughly, to say that ( F , u )  and (F,A) agree is to say that each 
formula p expresses the same range of statements whether we 
construe it as part of the statemental logic or part of the lin- 
guistic logic. Obviously: 

(3.21) If ( F , u )  and (F,A) agree then any formulap is validN 
for (F ,u )  iff it is validN for (F,A).  

An immediate corollary of (3.21) is: 

(3.22) If (F,(J-} and (F,A) agree then a semantics is adequate 
for one iff it is adequate for the other. 

We can also define a stronger sense of agreement: 

(3.23) If (F ,u )  is a statemental logic and (F,A) is a linguistic 
logic with the same set of formulas, they agree uni- 
formly i f f :  
(a) for each interpretation a of ( F , u )  there is an inter- 

pretation q of (F,A) and a pragmatic assignment 
IT such that for every p in F ,  p.(p) = (Â¥i}/'n)(p) 
and 

(b) for each interpretation q of (F,A) and pragmatic 
assignment IT there is an interpretation (JL of ( F , u )  
such that for every p in F ,  p.(p) = (q/'rr)(p). 

To say that (F,u)  and (F,A) agree uniformly is to say, roughly, 
that each set of formulas expresses the same range of sets of 
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statements whether we regard the formulas as part of the state- 
mental logic or part of the linguistic logic. Obviously: 

(3.24) If (F,u) and (F,A) agree uniformly then if F is a set 
of formulas and p  a formula, F Q N p  in (F,u) iff 

%p in (F,A). 

An immediate corollary of (3.24) is: 

(3.25) If (F,u) and (F,A) agree uniformly then a semantics 
is strongly adequate for one iff it is strongly adequate 
for the other. 

In light of (3.22) and (3.24), even if a semantics was de- 
signed for statemental logics rather than linguistic logics, it 
will often be adequate or strongly adequate for the latter as 
well. We will find that this is true of all the standard semantics 
for truth-functional and first-order nonmodal and modal logic. 
On the other hand, there are also semantics that appear to be 
designed explicitly for linguistic logics. The models in the se- 
mantics of Kamp [1971], van Fraassen [1977], and Kaplan 
[I9791 all contain an element mirroring the pragmatic assign- 
ment and have a more exotic structure than do classical models. 
I will illustrate this by constructing a simple linguistic logic 
distilled out of Kaplan's more complicated logic of demon- 
s trat ive~.~ In order to keep the illustration as simple as pos- 
sible, let us begin by considering a first-order modal logic 
without quantifiers but with individual constants. By avoiding 
quantifiers, we can keep the definition of 'truth in a model' 
relatively ~ i m p l e . ~  The models for this non-quantificational 
modal language are those of Kripke [1963]. Such a model is 
a quintuple (wo,W,U,D,p) where W is a set (the set of 
"worlds"); woâ‚¬ U is a set (the set of all "possible ob- 
jects"); D is a function that assigns to each w in W a subset 
of U (the domain of w) in such a way that U = UwewD(w); 

This is taken from Kaplan [1976], 74-84. Kaplan's logic goes consid- 
erably further than the simple logic described here. Kaplan includes an array 
of modal operators, tense operators, and his 'dthat' operator. 

The semantics for a full first-order modal logic with quantifiers will be 
discussed in section eight. 
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and p is a function that to each individual constant c assigns 
a member of U (the denotation of c )  and to each pair (w,R) 
where wEW and R is an n-place relation symbol assigns some 
set of ordered n-tuples of members of U. ^(w,R) is the ex- 
tension of R at w, i.e., the set of all n-tuples of "possible 
objects satisfying R at w". Truth in a model is defined re- 
cursively as follows: 

(3.26) (a) ^Ra,.. .an1 is true in (wo,W,U,D,p) iff 
(~ ( f l i ) , . .  .,ix(an))~p(R,wo); 

(b) ^1p1 is true in (wo,W,U,D,p) iff p is not true 
in (w0,W,U,D,ix); 

(c) " ( p ~ q ) l  is true in (wO,W ,U,D, p) iff p and q are 
both true in (wO,W,U,D,p); 

(d) "Dpl is true in (wo,W,U,D,p) iff for every w 
in W,  p is true in (w,W,U,D,p). 

Following Kaplan (roughly), we extend this language by add- 
ing the privileged constants 'I' and 'here' and the privileged 
relation symbols 'E' ('exists') and 'L' ('is located at'). Then 
we revise the definition of a model by saying that a model is 
an ordered pair ((wo, W,U,D, p,),(s,p)) where (wO, W,U,D, p) is 
a Kripke-model and: 

(a) s,pâ‚¬D(wo 
(b) for each w in W,  p(w,L) C D(w) X D(w); 
(c) for each w in W, p(w,E) = D(w); 
(d) for each w in W, u.(w,I) = s; 
(e) for each w in W, p(w,here) = p .  
(f) (~ ,P)~U(WO,L) . '~  

Truth in a model is then defined recursively pretty much as 
before: 

lo Additional constraints might reasonably be added, but this is sufficient 
for our present purposes, which are purely illustrative. 
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(c) Yp~q)"  is true in ((wo,W,U,D,p),(s,p)) iff P and 
q are both true in ((wo,W,U,D,n),(s,p)); 

(d) is true in ((w0,W,U,D,~),(s,p)) iff for every 
w in W,  p is true in ((wo,W,U,D,p),(s,p)). 

(s,p) plays the role of pragmatic parameters in this semantics. 
The novelty of this semantics is illustrated by the fact that 
"Ed)' ('I exist') and "L(I,here)' ('I am here') are both valid, 
but neither VE(I) '  nor rOL(I,here)l are valid. The sugges- 
tion is that this semantics (perhaps with some added con- 
straints) captures validity7- rather than one of the stronger kinds 
of validity. One invariably makes a true statement by saying 
either 'I exist' or 'I am here', but the statement one makes is 
not necessary. 

For the most part, linguistic logics and their semantics have 
been constructed in connection with rather difficult philo- 
sophical problems concerning the philosophy of language, time, 
etc. This makes these semantics hard to evaluate, because their 
adequacy generally turns upon questions regarding time, dem- 
onstratives, and so on, for which there is no general agree- 
ment. To avoid becoming enmeshed in those substantive ques- 
tions, I will not directly discuss any of these semantical theories 
in the present book, but the reader may find it interesting to 
apply the present framework to them himself. 

4. Truth-Functional Logic 
In the last section, a framework was established within which 

to study various formal semantical theories. Beginning in this 
section, that framework will be applied to some well-known 
logical theories. In the present section I will consider truth- 
functional logic (i.e., the propositional calculus), alternatively 
as a propositional logic, a statemental logic, an SOA logic, 
and a linguistic logic. The discussion of truth-functional logic 
is actually rather trivial, but it will serve as a good introduc- 
tion to the investigation of more complex theories. 

Let us begin by considering truth-functional logic as a prop- 
ositional logic. The language is (F , IT )  where the set of for- 
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mulas F is constructed in the usual way from a denumerable 
set At of atomic formulas and IT is the obvious assignment of 
propositional forms to formulas. A  model is a function map- 
ping the set of atomic formulas into {0 ,1} .  Truth in a model 
is defined in the usual way. In truth-functional logic, all for- 
mulas are built exclusively out of atomic formulas, and the 
latter express propositions, so an interpretation is any function 
assigning propositions to atomic formulas. If p  is an inter- 
pretation, p  assigns propositions to molecular formulas re- 
cursively as follows: 

The characterization of the surrogate relation in truth-func- 
tional logic is extremely simple. We prove by induction on 
the length of a formula: 

(4 .1 )  M  = ( w , p )  iff for every atomic formula p ,  M ( p )  = 1 
iff p(p)  is true at w .  

We can use (4 .1 )  to prove that the semantics for truth-func- 
tional logic is strongly adequate. To this end we prove ( A l )  
and (A2) :  

( A l )  For each possible world w and interpretation p,, there 
is a model M  such that M  = ( w , p ) .  

Proof: For each atomic formula p ,  define: M ( p )  = 1 iff 
p,(p) is true at w. Then by ( 4 .  I) ,  M  == ( w , p ) .  

(A2)  For each model M  there is an interpretation p  and pos- 
sible world w  such that M  = (w,~). 

Proof: Let w  be the actual world, and for each atomic 
formula p ,  if M ( p )  = 1 let p(p)  be the proposition that 2 + 2  
= 4 ,  and if M ( p )  = 0  let p ( p )  be the proposition that 2+2 
= 5. Then by (4 .1 ) ,  M  = ( w , p ) .  

It follows that truth-functional logic, construed as a prop- 
ositional logic, is strongly adequate. If we reconstrue it as a 
statemental logic or an SOA logic, nothing much changes. 
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The only difference is that an interpretation becomes a func- 
tion assigning either statements or states of affairs to atomic 
formulas. Strong adequacy is still established in precisely the 
same manner. 

It is also possible to regard truth-functional logic as a lin- 
guistic logic. In that case we take formulas to express se- 
mantical forms. We can define the conjunction K(A, ,A->)  of 
two 5-intensions as in ( 2 .  lo), and we can define the negation 
of an S-intension analogously: 

(4 .2 )  If A is an 5-intension, N(A) is that 5-intension such 
that for any pragmatic assignment I T ,  N(A)(IT)  = 

-A(IT). 

Then an interpretation q assigns 5-intensions to the atomic for- 
mulas directly and assigns 5-intensions to the molecular for- 
mulas recursively as follows: 

It is easy to see that this linguistic logic agrees uniformly with 
truth-functional logic construed as a statemental logic. To this 
end we must establish two simple theorems: 

(4 .3 )  For each statemental interpretation of truth-func- 
tional logic there is a linguistic interpretation q and a 
pragmatic assignment IT such that for every formula 
p ,  W ( P )  = ( T I / T ) ( P ) .  

Proof: For each atomic formula q ,  we let q ( q )  be the con- 
stant-valued 5-intension A such that for every pragmatic as- 
signment I T ,  A(T) = k ( ~ ) .  It is then trivial to prove by in- 
duction on the length of a formula p that ^(p)  = (q / 'n)(p) .  

Equally trivially: 

(4 .4 )  For each linguistic interpretation q and pragmatic as- 
signment IT there is a statemental interpretation p. such 
that for every formula p ,  k ( p )  = ( q / ~ ) ( p ) .  

It then follows by (3 .25 )  that our semantics is strongly ade- 
quate for truth-functional logic construed as a linguistic logic. 
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Precisely the same argument will serve to show that first-order 
logic, non-quantificational modal logic, and first-order modal 
logic construed as statemental logics agree uniformly with 
themselves construed as linguistic logics; so in each case, the 
adequacy or strong adequacy of the semantics for the linguistic 
logic follows from the adequacy or strong adequacy of the 
semantics for the statemental logic. 

5 .  First-Order Logic 

When we turn to first-order logic, the situation becomes 
considerably more complicated. We can consider first-order 
logic with or without individual constants. Our logical con- 
stants will consist of the existential quantifier (Vx), the truth 
functions A and 1, and identity =. We define the universal 
quantifier (Ax), and the truth functions v, +, and <-> in the 
usual manner. We define the set F of closed formulas and the 
set WFF of open-or-closed formulas in the normal way. In 
first-order logic, a model is an ordered pair (D,F) where D is 
a nonempty set and p, is a function that assigns extensions to 
the relation symbols and denotations to the individual con- 
stants (if there are any). In this language, only the closed for- 
mulas are formulas in the sense of section three, i. e. , only the 
closed formulas express propositional forms (or statemental 
forms or SOA forms). This creates difficulties for giving a 
recursive definition of truth. These difficulties are circum- 
vented by introducing the notion of an assignment that is a 
function u assigning elements of D to individual variables. 
This can be regarded as a purely technical trick to enable us 
to define truth (perhaps we should call it something else) re- 
cursively for all formulas (open as well as closed) relative to 
((D,p),u). To this end we define: 

(5.1) If x is an individual variable and a and a* are as- 
signments, u 7 u* iff a and u* agree on their as- 
signments to all individual variables except possibly 
X. 
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The individual constants and individual variables jointly com- 
prise the individual symbols of our first-order language. The 
denotation of an individual symbol x  in ( ( D ,  p ) ,u )  is p(x) if x  
is an individual constant, and it is u(x) if x  is an individual 
variable. Then we define: 

(5.2) If ( D , p )  is a model and u is an assignment, truth rel- 
ative to ( ( D , p ) , u )  is defined recursively as follows: 
(a) if R is an n-place relation symbol and x i , .  . . ,xn are 

individual symbols whose denotations are al  , . . .,an 
respectively, then "Rx,, . . . ,xnl is true in ( (D,  p),u) 
iff ( a l , .  . . ,a,,)â p(R); 

(b) rx = y1 is true in ( ( D , p ) , u )  iff x  and y  have the 
same denotation in ( ( D ,  p) ,u);  

(c) r l p l  is true in ( ( D , p ) , u )  iff p  is not true in 
( (D,U.) ,IJ);  

(d) r p ~ q l  is true in ( ( D , p ) , u )  iff p  and q  are both 
true in Ã‡D,p) ,u)  

(e) r(Vx)pl is true in ( ( D , p ) , u )  iff there is an as- 
signment u* such that u ? u* and p is true in 

( (D,p) ,u*) .  

We can then define truth in a model for closed formulas as 
follows: 

(5 .3 )  A formula p is true in a model (D,y.} iff there is an 
assignment u such that p is true in ( ( D , p ) , u ) .  

The reason this definition works is that for closed formulas, 
every choice of an assignment yields the same truth value. 

Unlike the propositional calculus, it makes a difference 
whether we construe first-order logic as a propositional logic, 
a statemental logic, an SOA logic, or a linguistic logic, so we 
will consider each of these alternatives separately. 

5.1 Propositional First-Order Logic 

We have specified the syntax of our first-order language, 
but we have not yet specified how it is to be interpreted. The 
same set of formulas can be combined with different functions 
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IT assigning propositional forms to yield different languages 
(F,IT), and this will give us different logical theories. We will 
define IT as in (2.2) by specifying the class of interpretations. 
It is clear how most of the details of the specification of the 
class of interpretations should go: 'A' should symbolize con- 
junction, '1' should symbolize negation, '=' should sym- 
bolize identity, and relation symbols should symbolize con- 
cepts. There are, however, several options regarding the 
interpretation of the quantifiers, and there are problems con- 
cerning the role of individual constants. Let us begin by sup- 
posing that our language does not contain individual con- 
stants. In that case, interpretations are characterized recursively 
as follows: 

(a) If R is an n-place relation symbol, q(R) is an n-place 
concept; 

(b) q(Rx1,. . . ,xn) = q(R); 
(c) q(x = y) is identity; 
(d) if p is any formula, q (1p)  = -q(p); 
(e) if p and q are formulas, i \ (p~q) = q(p)&q(q).I1 
(f) -clause for quantifiers- 

To complete this, we must fill out clause (f), explaining how 
quantifiers are to be interpreted. 

In interpreting quantifiers, we must ask what they are to 
range over. They might be taken to range over everything there 
is, or only over some restricted universe of discourse. This 
will be reflected by differences in TT, and the formal semantics 
we described above might be adequate for some of these choices 
of IT and not for others. Let us examine the alternatives: 

(1) The simplest choice is to have the quantifiers range over 
everything in the world. On this alternative, in constructing 
an interpretation q(p) of a formula p ,  a quantifier is translated 
directly into a quantifier in the proposition, i.e., we have the 
following clause (f): 

l 1  This presupposes some convention regarding how the argument places 
in concepts are associated with the variables occurring free in an open for- 
mula, but I will leave that to the reader. 
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( f i )  if p is an open formula then i ] ( (Vx)p)  = ( 3 ~ ) i ] ( ~ ) . ' ~  

Let us call the resulting choice of IT ' I T ] ' .  To assess the ade- 
quacy of our formal semantics for (F,IT') ,  consider ( A l )  and 
(A2) .  

( A l )  requires that for each (w,q) there is a model M that 
is a surrogate of it. This would be unproblematic if there 
were always a set of all objects over which unrestricted quanti- - fiers range, i.e., a universal set; but according to the received 
view on set theory, there is no such set." Fortunately, we 
can establish ( A l )  in another way. Given a set R of axioms 
and rules of inference, if F C F and pEF, let us say that 
F I- p ( p  is derivable from F )  iff there are q i ,  . . . ,qn in F such that 
^ ( q , ~ .  . . A ~ , J  + p1 is a theorem (i.e., provable using R). R 
is sound iff every theorem of R is validN. There exist any 
number of sets R of axioms and rules of inference for first- 
order logic that are strongly complete in the sense that for 
any F C F and pEF, F I- p iff F 1 p .  Furthermore, it is 
readily proven by induction on the length of a proof in R 
that every theorem is validN and hence R is sound. As R is 
sound it follows that if F h p and i] is an interpretation, then 
if all the propositions in { i ] (q)\  qEF} are true at a world w ,  
q ( p )  is also true at w; i.e., R is truth preserving. Now con- 
sider a world w and an interpretation i], and let F = q ( p )  
is true at w}. F is consistent, so we cannot obtain a contra- 
diction from F using truth preserving rules of inference, 
and hence we cannot derive a contradiction from F using R. 
By strong completeness, F has a model M .  For every for- 
mula p ,  either p or i p  is in F, so r = p is true in M}. 
Hence M = (w,i]). Therefore, ( A l )  holds. Note that this 
argument can be replicated for any logical theory having a 

l2 Again, this presupposes some convention associating variables in for- 
mulas with argument places in concepts. 

l 3  One is tempted to reason that, in light of the Skolem-Lowenheim theo- 
rem, we can always cut down the range of the quantifiers and obtain a model 
of any infinite cardinality without affecting the truth of any formula in the 
model. But such reasoning is invalid. The Skolem-Lowenheim theorem is 
not applicable unless our quantifiers range over a set of objects initially, and 
the problem we are trying to avoid is that they do not. 
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formal semantics for which there exists a strongly complete 
system of sound axioms and rules. 

Although (Al) holds for (F , r J ,  (A2) and (A3) both fail. 
The difficulty is that there are infinitely many necessary en- 
tities (e.g., numbers), and so every possible world contains 
infinitely many objects. Consequently, no model with a finite 
domain can be a surrogate of any possible world. Thus the 
semantics is inadequate. The semantics makes formulas like 
r(Vy)(/\x) y = x1 satisfiable (in a model with a one-element 
domain), but for (F,'n,) the negations of such formulas are 
validN, 

It is obvious how to alter the semantics in order to meet this 
difficulty. We simply require that models have infinite do- 
mains. If we do this the set R of rules of inference is no longer 
strongly complete, and so our defense of (Al) collapses. It 
can be resurrected by strengthening R, but even then it is un- 
clear whether (A2) or (A3) holds. Furthermore, even if our 
modified semantics is adequate for (F,r1),  the resulting set of 
valid formulas is not the same as the set of theorems for clas- 
sical first-order logic (although the fragment without identity 
is the same). It is essential for obtaining classical first-order 
logic that we have models with finite domains. For example, 
on our modified semantics, l (Vx)(Aj)  y = x. 

(2) If we are to obtain classical first-order logic, we must 
adopt an interpretation of the quantifiers that legitimizes models 
with finite domains. The obvious way to do this is to interpret 
quantifiers as ranging over restricted universes of discourse. 
On this proposal, for each interpretation q there is a concept 
a,, such that in constructing the interpretation q(p)  of a for- 
mula p ,  quantifiers in p are translated into quantifiers in prop- 
ositions relativized to a,,. In other words, we have the follow- 
ing clause (f): 

if2) if p is an open formula then q((Vx)p) = (3x)[(a,,:x) & 
~ ( ~ 1 1 .  

Let r2 be the resulting assignment of propositions to formulas. 
The standard formal semantics for first-order logic is again 

inadequate for ( F , n ) .  This time the difficulty is that there are 

202 
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interpretations T} that relativize the quantifiers to concepts a,, 
whose extensions are empty in some worlds. Consequently, 
'(\/x)(Fx v l F x ) ^  is not validw for (F,r2) ,  but it is semantical- 
ly valid. Again, it is obvious how to alter our formal semantics 
in order to meet this difficulty, viz., by admitting models with 
empty domains. With this alteration, (Al) holds. (Al)  can be 
established as before, using a modified set of rules R. 

Turning to (A2), it can be established as follows. (A2) re- 
quires that every model M is the surrogate of some (w,~)) .  Two 
models are elementarily equivalent iff they make the same for- 
mulas true. Elementarily equivalent models are surrogates for 
the same (w,T))'s. By the Skolem-Lowenheim theorem, every 
model is elementarily equivalent to a countable model, so to 
establish (A2) we need only show that every countable model 
is a surrogate of some (w,~)) .  We describe a possible world w 
by supposing that substances in w are infinitely divisible, so 
for any object it is possible to have any finite number of pieces 
of that object. We suppose further that there exists in w a set 
S of billiard balls having the same cardinality as the domain 
of our model M ,  and for each natural number n, there exists 
a carton (something like an egg carton) C,, consisting of n cells 
arranged linearly and numbered 1 through n. Pieces of the 
billiard balls can be fitted into the cells of the cartons. We 
define our interpretation T) as follows. Consider an enumera- 
tion of the relation symbols: for each n > 0, let R\ be the ith 
n-place relation symbol. Consider a denumerable set of dis- 
tinct temporal instants ti. We let a,, be the concept expressed 
by 'is a billiard ball', and for each i, T)(R\) is the concept 
expressed by 'at some time between ti and ti+,, a piece of x, 
occupies the first cell in C,, and . . . and a piece of x,, occupies 
the nth cell in C,,'. The point of this construction is that the 
concepts thus expressed by the relation symbols are logically 
independent of one another and can have any extensions within 
S that we like. Thus, regardless of the extensions of the re- 
lation symbols in M ,  it is possible for there to be a world w 
of the preceding sort such that M == ( w , ~ ) ) . ' ~  

l 4  Note that there is no obvious way to accommodate this construction to 
(F,ni) so that the quantifiers range over more than just contingent objects. 

203 
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As (Al) and (A2) hold for this semantics, it is strongly 
adequate for (F,'RT>. But it should be emphasized that 
the resulting set of valid formulas is not the same as the set 
of theorems of classical first-order logic. For example, 
r(Vx)(Fx v ~ F X ) '  is not valid. The logic we get in this way 
is a "free logic". 

(3) There is a contrived choice of IT that gives us classical 
first-order logic. Once again, we take the quantifiers to range 
over restricted universes of discourse. For each interpretation 
-q, there is a concept a,, in terms of which we interpret the 
quantifiers. But now, rather than simply relativizing the quan- 
tifiers to a,,, we relativize the quantifiers to a*,, defined as 
follows: 

Assuming that the empty set exists necessarily, this ensures 
that the quantifiers range over a nonempty universe of dis- 
course. If the extension of a*,, has nothing else in it, it con- 
tains the empty set. Let us call this choice of TT ' 7 ~ ~ ' .  

This procedure suffices to obtain classical first-order logic, 
but it is ad hoc. If we have to work this hard to get classical 
first-order logic, one cannot help but wonder why we should 
want it so badly. The choice of either  IT^ or 7r2 is much more 
natural. If we really want to relativize quantifiers to arbitrary 
universes of discourse, we should adopt IT;. If instead the 
thought is that we are going to be dealing with numbers or 
some other universe of discourse that cannot be empty, we 
will almost invaribly know that such a universe is infinite, and 
then the choice of IT, becomes appropriate. 

In discussing the interpretation of the quantifiers, we have 
been assuming that our language does not contain individual 
constants. Now let us reverse that assumption and see what 
difference it makes. What role should individual constants play 
in a propositional logic? It is frequently claimed that individ- 
ual constants symbolize either proper names or arbitrary sin- 
gular terms, but that is to confuse propositional logics with 
linguistic logics. The formulas of a propositional logic sym- 
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bolize propositional forms. As such, it makes no sense to talk 
about individual constants symbolizing linguistic items. Within 
propositional logics there appear to be just two choices re- 
garding individual constants. We can either include them as 
constituents of formulas that express propositional forms, or 
we can relegate them exclusively to those formulas that (like 
open formulas) do not express propositional forms but are in- 
cluded in the language merely as a technical convenience for 
defining truth for those formulas that do express propositional 
forms. In the latter case, individual constants would be treated 
like free variables were treated before-as convenient devices 
for the interpretation of quantifiers in our formal semantics. 
On the other hand, if individual constants are to be constitu- 
ents of formulas expressing propositional forms, there would 
seem to be only one choice regarding how an interpretation 
should treat an individual constant. Individual constants de- 
note individuals, so they must be interpreted in terms of prop- 
ositional constituents that designate individuals. In other words, 
interpretations must assign propositional designators to indi- 
vidual constants. 

Which way we interpret individual constants makes a dif- 
ference to the resulting logical theory. If we treat them merely 
as devices for calculating truth values, their treatment is the 
classical one, and as they are not constituents of formulas ex- 
pressing propositional forms, the logical theory is the same as 
before. But if we take individual constants to symbolize prop- 
ositional designators, our models must allow individual con- 
stants to lack denotations because propositional designators may 
fail to designate. This in turn requires us to re-examine the 
definition of truth for atomic formulas. If a constant c lacks 
a denotation, how do we compute the truth value of rFcl? 
Given that an interpretation can assign any one-place concept 
to F ,  there cannot be a standard way of doing this. Some con- 
cepts a are such that if 8 has no designatum then (a:Â¤ is au- 
tomatically false, but others (e.g., the concept of not existing) 
make (a:Â¤ automatically true, and still others treat different 
nondesignating designators differently. For an example of the 
latter, let a be the counterfactual concept [(3y) y == x > x == 81. 
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Then ( ~ 8 )  is true even if 8 does not designate, but if 8* 
is some other nondesignating designator, (a :8*)  will usually 
be false. These complexities can only be accommodated by 
altering the formal semantics. Specifically, the truth value of 
an atomic formula can no longer be determined by the exten- 
sion of the relation symbols and the denotations of the indi- 
vidual constants. A more complex definition of truth is re- 
quired. This is most easily handled within first-order modal 
logic. But notice that even given a suitable revision of the 
semantics the resulting logic will be nonclassical. For exam- 
ple, rFa + ( \ /x)Fxl,  which is a theorem of classical first- 
order logic, will not be valid. 

5.2 Statemental First-Order logic and Linguistic First-Order 
Logic 

Next consider what happens when we view first-order logic 
as a statemental logic. If our language does not contain in- 
dividual constants, it appears that everything we said about 
propositional first-order logic can be repeated for statemental 
first-order logic. If our language does contain individual con- 
stants and we interpret them as expressing statemental des- 
ignators, the situation becomes even more complicated than 
in propositional first-order logic. The difficulty is that the 
standard symbolism in first-order logic does not allow us to 
make some necessary distinctions. For example, in Chap- 
ter Two we discussed the difference between the statements 
(x  == y:9,9) and (x  = x:9) ,  arguing that both are externally 
necessary but only the latter is internally necessary and a priori. 
Similar remarks can be made about the statements 

and 

But in each of these cases, whereas we have two different 
statements to be symbolized, we have only a single formula 
that is a candidate for symbolizing both, viz., "c = c1 and 
"Fc v l F c l .  Thus, if we are to study first-order statemental 
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logic with individual constants, we must enrich the syntax of 
our formal language. I will not pursue that here, however. 

Obviously, linguistic first-order logic agrees uniformly with 
statemental first-order logic, so any conclusions we can draw 
about the adequacy or strong adequacy of the latter generalize 
immediately to the former. 

5 . 3  SOA First-Order Logic 

Construing first-order logic as an SOA logic, an interpre- 
tation assigns properties to relation symbols and open for- 
mulas, individuals to individual constants, and states of affairs 
to closed formulas. This treatment of individual constants is 
made possible by the fact that properties operate directly on 
individuals to produce states of affairs, unlike concepts and 
attributes, which only operate on individuals via designators 
designating those individuals. Nondenoting individual con- 
stants cease to be a problem in SOA logics, because the con- 
stants are interpreted directly in terms of individuals and hence 
cannot fail to denote. This makes individual constants behave 
much more like they are supposed to behave in the standard 
semantics for first-order logic. As we will see in the next para- 
graph, however, there is a residual difficulty concerning in- 
dividual constants. 

Just as for propositional first-order logic, we have different 
options regarding the interpretation of the quantifiers. The most 
natural interpretation of the quantifiers is analogous to ir2 for 
propositional first-order logic. That is, an interpretation q as- 
signs some property a,, to which it relativizes quantifiers. Let 
us call the resulting language ' (F,&)' .  As in the case of prop- 
ositional first-order logic, the standard semantics must be 
modified to allow for empty domains if it is to be adequate 
for (F,p2) .  This, however, creates difficulties for the interpre- 
tation of individual constants. How are they to be interpreted 
in any empty domain? They cannot be assigned denotations 
from the domain, because there are no denotata to be as- 
signed. And if we allow individual constants to go without 
denotata in models with empty domains, we again have the 
problem of stating truth conditions. Because of these consid- 



VI. Formal Semantics 

erations, I will confine my attention here to SOA first-order 
logic without individual constants. We can then establish the 
strong adequacy of our semantics using precisely the same ar- 
gument we used in connection with (F,?). It is worth ob- 
serving, however, that it is much easier to establish strong 
adequacy for SOA logics than for propositional logics. Spe- 
cifically, it is much easier to establish (A2). In propositional 
first-order logic we had to construct elaborate interpretations 
in order to obtain surrogates for arbitrary models, but in SOA 
first-order logic it is absolutely trivial to find an interpretation 
that is a surrogate of a model. Suppose our model is (D, p). 
D is a set of individuals, and to each n-place relation symbol 
R, p assigns a set p(R) of ordered n-tuples of members of D.  
Let our interpretation q assign to R the property of being an 
ordered n-tuple that is a member of p(R). That is (recalling 
that n-place properties are functions from n-tuples to states of 
affairs), q(R) is that property that assigns to an n-tuple (xi , . . . ,xn) 
the necessary state of affairs if (xl , . . . ,x,,)â p(R) , and assigns 
the contradictory state of affairs otherwise. Similarly, let T] 

relativize quantifiers to the property of being a member of D; 
i.e., a,,(x) is the necessary state of affairs if XED, and a ( x )  
is the contradictory state of affairs otherwise. It is then trivial 
to verify by induction on the length of a formula that: 

(5.4) (a) If p is a closed formula then q(p) obtains iff p is 
true in (D, p); and 

(b) if p is an n-formula (i.e., a formula in which n 
variables occur free), an n-tuple (xi,. . . ,xn) has the 
property q(p) iff (xi,. . . ,xn) satisfies p in (D,p)." 

The greater ease with which we can find surrogates for models 
in SOA logics will be even more significant when we turn to 
modal logic. Because of the difficulty in finding surrogates 
for models, I have been unable to establish strong adequacy 
for either non-quantificational or first-order propositional or 

l5 This theorem also tells us that in constructing ( w , ~ )  for a model, we 
can always let w be the actual world. It follows from this that validity^. and 
validityo for SOA first-order logic coincide. 
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statemental modal logic, but I am able to establish the strong 
adequacy of both SOA non-quantificational modal logic and 
SOA first-order modal logic. It appears that in many ways the 
standard formal semantics are better suited for SOA logics than 
they are for either propositional or statemental logics. 

6. Non-Quantificational Modal Logic 

Non-quantificational modal logic is what might more con- 
ventionally be called 'propositional modal logic'. However, 
we want to talk about 'propositional non-quantificational modal 
logic', 'statemental non-quantificational modal logic', and so 
on. It would be unduly confusing to talk instead about 'prop- 
ositional propositional modal logic', 'statemental proposi- 
tional modal logic', etc. The language of non-quantificational 
modal logic is that of truth-functional logic augmented with a 
de dicto modal operator 0 symbolizing possibility. The se- 
mantics is that discussed in section one. As I have already 
endorsed S5, there is no point in considering the versions of 
the semantics that incorporate the accessibility relation. Models 
will be taken to be ordered pairs (G,K) where K is a set of 
valuations (functions mapping the atomic formulas into {O, l}) 
and GEK.  Truth in a model is defined as in section one. 

6.1 Propositional Non-Quantificational Modal Logic 

In propositional non-quantificational modal logic, interpre- 
tations assign propositions to atomic formulas and interpret 
formulas in terms of propositional forms. To assess the ade- 
quacy of our formal semantics, we attempt to establish (Al) 
and (A2). (Al) can be established just as it was for first-order 
logic. S5 is strongly complete for our formal semantics, and 
we have endorsed S5, so we know that all inferences in ac- 
cordance with S5 are sound. If q is an interpretation and w is 
a possible world, let F = {pl q(p) is true at w}. F is consistent, 
so we cannot obtain a contradiction from F using sound in- 
ferences and hence cannot obtain a contradiction from F within 
S5. By the strong completeness of S5, it follows that F has a 
model M, and hence M = (w,q). Therefore, (Al)  holds. 
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( A 2 )  is considerably more problematic. Consider the fol- 
lowing principle: 

(6.1) If K is any nonempty set of valuations, there is an 
interpretation q such that: 
( 1 )  if HGK then there is a world W H  such that for each 

atomic formula p ,  H ( p )  = 1 iff q ( p )  is true at W H ;  

and 
( 2 )  if H $ K then there is no such world wH. 

To establish ( A 2 )  for non-quantificational modal logic, it suf- 
fices to establish (6.1).  This is proven as follows. First, we 
prove the following simple lemma by induction on the length 
of formulas: 

(6 .2)  If q is an interpretation and w and w* are worlds and 
for every atomic formula q ,  q ( q )  is true at w iff q ( q )  
is true at w*, then for every formula q ,  q ( q )  is true 
at w iff q ( q )  is true at w*. 

Given lemma (6.2),  we prove the following theorem: 

(6.3) If (G,K)  is a model and q an interpretation such that 
( 1 )  if HGK then there is a world wH such that for each 

atomic formula p ,  H ( p )  = 1 iff q ( p )  is true at wH; 
and 
( 2 )  if H @ K then there is no such world W H ;  

then (G ,K)  - (wG,q).  

Proof by induction on the length of a formula. This is 
trivial for all but the case of "Opl .  If "Opl  is true in (G ,K)  
then for some H in K ,  p is true in (H ,K) ,  so by the induction 
hypothesis, there is an H in K such that q ( p )  is true at wH,  
and hence q ( 0 p )  is true at W G .  Conversely, suppose q ( 0 p )  
is true at WQ. Then q ( p )  is true at some world w .  Define 
the valuation H by specifying that for each atomic formula 
q ,  H(q)  = 1 iff q ( q )  is true at w .  By supposition then H E K ,  
and by (6.2) q ( p )  is true at W H .  By the induction hypothesis, 
p is true in (H,K) ,  so "Opl  is true in (G,K) .  

Consequently, if (6.1) holds then ( A 2 )  holds. 
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Unfortunately, I have been unable to establish (A2) either 
by proving (6.1) or by any other means, and hence unable to 
use theorem (3.7) to establish the strong adequacy of the for- 
mal semantics for S5.  We can, however, employ theorem (3.7) 
in a different way to show that our semantics is adequate. This 
is done by narrowing the language. Our language is (F,T). 
For each p in F ,  let F be the set of formulas containing no 
atomic formulas (i.e., sentence letters) not contained in p. Then 
consider the restricted language (Fp,'n). A valuation for (Fp,v)  
is finite because the restricted language contains only finitely 
many atomic formulas. If G is a valuation for (F ,T) ,  let Gp 
be that subset of G that is a valuation for (Fp,-n}, and for a set 
K of valuations, let Kp = {Gp\ GEK}. Then if (G,K) is a model 
for (F,T) ,  (Gp,Kp) is a model for (Fp,ir), and we readily prove 
by induction on the length of a formula of F that: 

(6.4) If qâ‚¬ then q is true in (G,K) iff q is true in (Gp,Kp). 

Consequently, the strong adequacy of the formal semantics for 
(Fp,n) (for each formula p)  implies the adequacy of the se- 
mantics for (F,T). Furthermore, (6.1) is easily established for 
(FP,n). If p ,,..., pn are the atomic parts of p (listed in some 
fixed order), a Boolean conjunction for Fp is a conjunction of 
the form r ( i ) p l  A ... A (1)pn1 where each negation can be 
either present or absent. Because ( F p , ~ )  has only finitely many 
atomic formulas, each valuation G corresponds to a unique 
Boolean conjunction BG that, in effect, just lists the truth val- 
ues of the pi in G .  By is the unique Boolean conjunction that 
is true in G .  Let C = { B ~  Gâ‚¬Kp C is finite, so suppose C 
= {Cn ,..., CJ for some k. For each i < k ,  let (pi be the prop- 
osition that there exist exactly i red objects, and let (pk be the 
proposition that there exist at least k red objects. This has the 
result that the propositions ip ,  are consistent but pairwise in- 
consistent, and (go v . . . v %) is necessary. To construct an 
interpretation T) satisfying (6. I ) ,  for each atomic formula p, 
we let r\(p,) be the disjunction of all the (pi such that pj occurs 
unnegated in C,. Then we establish two facts about this 
interpretation: 
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(a) For each i, q(C,) is equivalent to a>,; 
(b) if B is a Boolean conjunction not in C then Nec(-~(5)).  

We establish (a) as follows. If p, occurs unnegated in C,, then 
q(p,) is a disjunction one of whose disjuncts is (p,, so (pi entails 
q(pj). If pj occurs negated in Ci, then q(p,) is a disjunction 
none of whose disjuncts is (pi, and hence as the i p  are pairwise 
inconsistent, ip ,  entails -q(pj). Thus, q(Ci) is a conjunction 
each conjunct of which is entailed by <pi, and hence ipi entails 
q(C,). Now consider (p, for j # i. As above, <pj entails q(C,). 
But C, is inconsistent with C,, so (pj entails -q(Ci), and hence 
q(C,) entails -qj. Thus, q(C,) entails (-(po & . . . & -ipi.l 

& -(pi+l & ... & -q^). But Nec(ipo v ... v (pk), so q(C,) entails 
(pi. Consequently, q(C,) is equivalent to (pi. 

Turning to (b), suppose B is a Boolean conjunction not in C. 
Different Boolean conjunctions are inconsistent with one an- 
other, so for each i, q(B) entails -q(Ci), and hence q(B) en- 
tails (-(po & ... & -qk). As Nec((po v ... v qk), Nec(-q(B)). 

(a) and (b) together imply that (6.1) holds for (Fp,'n}. Con- 
sequently, (A2) holds for (Fp,ir) and hence our formal se- 
mantics is strongly adequate for (FP,n). It follows that our 
semantics is adequate for (F,'n). However, the strong ade- 
quacy of the semantics for (F,IT) remains an open question. 

We are now in a position to resolve one of the puzzles pro- 
pounded in section one regarding the formal semantics for non- 
quantificational modal logic. The puzzle consisted of noting 
that we can have models like (G,{G}) where the set of val- 
uations intended to represent the set of all possible worlds is 
very small,. This is puzzling because the set of all possible 
worlds is infinite. The first step in resolving this puzzle con- 
sists in observing that, contrary to what is normally claimed, 
valuations do not really correspond to possible worlds. Rather, 
they correspond to pairs (w,$ of possible worlds and inter- 
pretations. Furthermore, two different pairs (w,$ and (w*,q) 
will correspond to the same valuation if they make the same 
formulas true. Finally, we note that it is possible to construct 
an interpretation q for non-quantificational modal logic that 
makes every formula either necessarily true or necessarily false. 
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For such an interpretation q, the worlds in the pairs (w,T}} are 
irrelevant to the determination of the truth values of formulas. 
Thus, there is just one valuation G corresponding to such an 
interpretation regardless of what world we pair the interpre- 
tation with, and hence the appropriate model for such a pair 
w , n }  will be (G,{G}). 

6.2 Statemental and Linguistic Non-Quantificational 
Modal Logic 

The heuristic idea behind the formal semantics for non- 
quantificational modal logic is the identification of necessity 
with truth at all possible worlds. We have seen, however, that 
statemental modal operators must express internal necessity 
rather than external necessity, and internal necessity does not 
coincide with truth at all possible worlds. Thus, we would 
naturally expect that the semantics is not adequate for state- 
mental modal logic. It is somewhat surprising then that the 
semantics is adequate despite the failure of its heuristic basis. 
We showed above that S5's holding for propositional modal 
logic entails that S5 also holds for statemental modal logic.16 
It follows that (Al) holds for statemental modal logic. In es- 
tablishing the adequacy of S5 for propositional modal logic, 
what we showed was that if p is any formula that is not a 
theorem of S5 then we can construct a proposition ip that is a 
counterexample to p;  i.e., ip has the form expressed by p ,  but 
ip is not necessary. The propositions ip are constructed out of 
the propositions Q, together with the logical operators &, -, 
and 0. The propositions ip, are about how many red objects 
there are and have the important characteristic that they are 
also statements. For statements that are also propositions, in- 
ternal and external necessity coincide and the modal operator 
can be regarded as expressing both. Consequently, the prop- 
osition (p that is a counterexample t o p  is also a statement, and 
so it follows that (A3) holds for statemental non-quantifica- 
tional modal logic. Therefore, our semantics is adequate for 

l6  See section four of Chapter Three. 
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statemental non-quantificational modal logic. This shows how 
unimportant the heuristic basis of the semantics actually is. 

Clearly, statemental non-quantificational modal logic agrees 
uniformly with linguistic non-quantificational modal logic, so 
our semantics is adequate for the latter as well. 

6.3 SOA Non-Quantificational Modal Logic 

In SOA non-quantificational modal logic, our language is 
(F,p) where p assigns SOA forms to formulas. An interpre- 
tation assigns states of affairs to formulas. It was argued in 
Chapter Three that S5 holds for SOA modal operators, so we 
can establish (Al) for (F,p) just as we did for propositional 
and statemental non-quantificational modal logic. When we 
turn to (A2), however, things become interestingly different. 
We were unable to establish (A2) for either propositional or 
statemental modal logic, and hence had to settle for adequacy 
rather than strong adequacy. But in SOA modal logic, we can 
prove strong adequacy. This can be done very simply by 
adapting the argument used in section 6.1 to prove the strong 
adequacy of (F,,,'n). Unlike the case of propositions and state- 
ments, we have infinite conjunctions and disjunctions of states 
of affairs. As a result, we can form infinite Boolean conjunc- 
tions of states of affairs. Of course, our language contains only 
finite conjunctions, so we must modify the argument slightly. 
In order to prove (6. I), let K be a nonempty set of valuations. 
The cardinality of K is less than or equal to 2'0. Choose a set 
S of pairwise inconsistent states of affairs such that the car- 
dinality of S is the same as that of K and such that VS is 
necessary, and let f be a one-one mapping of K onto S. For 
example, if the cardinality of K is 2 0 ,  the members of S might 
have the form x and y being separated by r meters where r 
is a real number. We construct an interpretation -q satisfying 
(6.1) as follows. For each atomic formula p ,  let q(p) = 
V{/(G)\ GGK and G(p) = l}. For each G in K ,  the Boolean 
conjunction of states of affairs corresponding to G is BG = 
V{-v\(p)\ pCAt and G(p) = l} & V{--q(p)\ pCAt and 
G(p) = O}. Then we establish as before: 
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(a) For each G in K, f(G) = B ~ ; "  
(b) if G is a valuation not in K then Nec(-Bc). 

(a) and (b) imply (6. l ) ,  from which (A2) follows for (F,p). 
Thus, our formal semantics is strongly adequate for (F,p). 

It is very interesting that we can establish strong adequacy 
for SOA non-quantificational modal logic, but not for prop- 
ositional or statemental modal logic. This turns upon the fact 
that we have greater freedom in constructing states of affairs 
than we do in constructing propositions and statements. In par- 
ticular, we can form infinite conjunctions and disjunctions of 
states of affairs. We will find that something analogous is true 
in first-order modal logic. This suggests that standard formal 
logics may be more naturally construed as SOA logics than 
as propositional or statemental logics. Such an interpretation 
at least makes the semantics more natural. 

7. First-Order Modal Logic 

What is normally called 'first-order modal logic' might more 
properly be called 'first-order de re modal logic'. Our logical 
notation is that of first-order logic without identity or individ- 
ual constants, but with an added de re modal operator 0. Iden- 
tity could be added to our notation at the expense of only slightly 
greater complexity, but the addition of individual constants 
would involve us in all of the same difficulties as in nonmodal 
first-order logic. Furthermore, for propositional and statemen- 
tal first-order logic where individual constants would be taken 
to symbolize propositional and statemental designators, there 
is the additional problem noted in Chapter Three that the syn- 
tax must be enriched to distinguish between '0' and 'ma' and 
the semantics complicated accordingly. 

Our formal semantics is that of Kripke [I9631 and is con- 
structed as follows. A model is an ordered quintuple 
(w,W,U,D,p) where W is a set (the set of "worlds"); wGW; 
U is a (possibly empty) set (the set of all "possible objects"); 

" Recall that equivalent states of affairs are identical. 
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D is a function that assigns to each w in W a subset of U (the 
domain of w, i.e., the set of objects "existing in w") in such 
a way that U = UwwD(w); and u, is a function that, to each 
pair (w,R) where wâ‚ and R is an n-place relation symbol, 
assigns some set of ordered n-tuples of members of U. u,(w,R) 
is the extension of R at w, i.e., the set of all n-tuples of "pos- 
sible objects satisfying R at w". Note that it is not required 
that the extension of R at w be included in the domain of w. 
An assignment relative to (w , W,U,D, u,) is a function mapping 
the set Vr of individual variables into U. If xGVr and u and 
u* are assignments, u Ã u* iff u and u* make the same as- 
signments to all variables except possibly x. If (w,W,U,D,u,) 
is a model for which U # 0 and u is an assignment relative 
to (w,W,U,D,p), truth relative to ((w,W,U,D,p),u) is defined 
recursively as follows: 

(7.1) (a) ^x,. . .xnl is true in ((w, W ,U,D, u,),u) iff 
 XI),. . . ,~(xn))eu,(w,R); 

(b) '"1p1 is true in ((w,W,U,D,p),u) iff p is not true 
in ((w,W,U,D,u,),u); 

(c) ^ ( p ~ q ) ^  is true in ((w,W,U,D,u,),u) iff p and q 
are both true in ((w,W,D,U,u,),u); 

(d) '(Vx)pl is true in ((w,W,U,D,P,),U) iff there is a 
a* such that u* 7 u and u*(x)â‚¬D( and p is 
true in ((w,W,U,D,u,),u*); 

(e) rOpl is true in ((w,W,U,D,p),u) iff forevery w* 
in W, p is true in ((w*, W,U,D,@),u). 

As in nonmodal first-order logic, the assignment of denota- 
tions to individual variables is just a technical trick employed 
in order to define truth for closed formulas (F being the set 
of closed formulas). Closed formulas are the only formulas 
that express propositional, statemental, or SOA forms. Open 
formulas are here called 'wffs' rather than 'formulas'. We then 
define truth in a model as follows: 

(7.2) If pGF and (w,W,U,D,u,) is a model for which 
U # 0, p is true in (w,W,U,D,u,) iff there is an 
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assignment u relative to (w, W ,U,D, p.) such that p 
is true in ((w,W,U,D,p.),u). 

If U = 0 then there are no assignments relative to 
w,W,U,D,p.), and so truth must be defined differently. In 
that case, we rule that all existential generalizations are false 
and compute the truth values of compound formulas built out 
of existential generalizations as in non-quantificational modal 
logic. 

An n-formula is a wff in which n different variables have 
free occurrences. We define satisfaction as follows: 

(7.3) If p is an n-formula and (w,W,U,D,p.) is a model then 
(ai,. . . ,an) satisifes p in (w, W,U,D, p.) iff, if xi, .  . . ,xÃ 
are the variables occurring free in p listed in order of 
their initial occurrence in p then there is an assignment 
u relative to (w,W,U,D,p.) such that u(xl) = a l  and 
. . . and u(xn) = an and p is true in ((w ,W ,U,D, I JL) ,~ ) .  

This treatment of variables and quantification deserves com- 
ment. It is frequently "explained", in a heuristic way, that U 
represents the set of all possible objects-different ones of which 
are actual in different possible worlds-and the variables range 
over all of the possible objects. Taken literally, that is non- 
sense. There are no merely possible objects, and so there can 
be no set of all possible objects. It is tempting to try to make 
sense of this in terms of the possibilistic quantifiers and pos- 
sibilistic set theory of Chapter Three, but even that will not 
work. Not only is there no actual set of all possible objects- 
there can be no possible set of all possible objects. Possible 
sets are actual sets in other possible worlds. Therefore, to sup- 
pose there is a possible set of all possible objects is to suppose 
that there is a world at which the set of all possible objects is 
an actual set. We have seen that a set cannot exist without all 
of its members existing, so this supposition requires there to 
be a world at which all possible objects exist. We have already 
noted that such a supposition is unreasonable. To the contrary, 
it would seem to be a necessary truth that at any world it is 
possible for there to be something that does not actually exist; 
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i.e., r0('3x)-A(x exists)' is necessary. Thus, we cannot take 
the heuristic explanation of this semantics too literally. 

A second nonsensical claim that is often made about this 
semantics is that it treats variables as rigid designators. Vari- 
ables are not designators, rigid or limp. It should be empha- 
sized once more that the assignment of denotations to vari- 
ables is just a technical trick that facilitates the definition of 
truth for closed formulas. All it does is provide us with an 
elegant way of talking about the satisfaction of open formulas 
by sequences of objects. At the expense of further definitional 
complexity, we could eliminate all talk of assignments, in- 
stead providing a recursive definition for the notion of an n- 
tuple of objects satisfying an open formula in a model, and 
then define truth in terms of satisfaction. 

Kripke [1963] presents a version of quantified S5, which I 
have been calling 'KS5'. KS5 is strongly complete for this 
formal semantics. If p is any wff, we define a closure of p to 
be any (closed) formula obtained by prefixing universal quan- 
tifiers and necessity signs, in any order, to p .  The axioms of 
KS5 are then all closures of wffs of the following forms: 

(AO) truth-functional tautologies 
(All UP + P 
(-42) D(p + q) -  ̂(UP Uq) 
(A3) p + (Ax)p (provided x does not occur free in p)  
(A41 (Ax)(/? + q) + l (A-4~ -+ (Ax)ql; 
(A5) (Ay)[(Ax)p + Sb(y/x)p] (where Sb(y/x)p results from 

replacing all free occurrences of x in p by y, and y 
does not occur in p )  

(A61 Op + QOp 

The only rule of inference is modus ponens for '+' . Universal 
generalization and necessitation are derived rules of KS5.I8 

7.1 Propositional First-Order Modal Logic 

In propositional first-order modal logic, formulas express 
propositional forms. Interpretations assign concepts to relation 

' I presented a different axiomatization of KS5 in Chapter Three 



7. First-Order Modal Logic 

symbols and open formulas and they assign propositions to 
(closed) formulas. As in nonmodal first-order logic, we have 
several options regarding the interpretation of the quantifiers. 
I will only pursue the one that seems to me to be the most 
natural. I will take an interpretation q to assign a concept a,, 
to which the quantifiers will be relativized. This is option (b) 
of section (5.1). Let ( F , v )  be the language resulting from this 
choice of interpretations. l9 

Turning to questions of adequacy and strong adequacy, we 
can prove (Al) for ( F , v )  in the same way we have proven it 
for all of the other logical theories we have encountered so 
far. Inspection reveals that the axioms of KS5 are all true and 
the only rule of inference is truth preserving, so it follows as 
before from the strong completeness of KS5 that (Al)  holds 
for ( F , v ) .  

(A2) is problematic for first-order modal logic for the same 
reason it was problematic for non-quantificational modal logic. 
I have been unable to prove it and consequently unable to 
establish the strong adequacy of our formal semantics. How- 
ever, we can prove (A3) instead and thereby establish the ad- 
equacy of the semantics. (A3) requires: 

l9 In my opinion, the next most reasonable choice of interpretations would 
require that O(3x)x exemplifies a,. This is more reasonable than the anal- 
ogous requirement in nonmodal first-order logic that (3x)x exemplifies a,, 
because this is at least a logical constraint rather than a contingent constraint. 
If we modify the semantics by requiring that U # 0, we can prove the 
adequacy of this semantics as below. For that purpose we make use of the 
strongly complete version of S5 presented in Fine [1978]. 

It is of interest that the decision to relativize quantifiers rather than have 
them range over absolutely everything makes a difference to the logic. In 
connection with possibilistic set theory, I urged that given any two possible 
objects, there is a world at which they both exist, i.e., 

U(Vx)D(Vy)O(x exists and y exists). 

If quantifiers were not relativized to concepts, that would make the following 
valid: 

D(Ax)(AY)OFXY -  ̂D(Ax)D(Ay)Dxy. 

This is not a theorem of KS5. Nor should it be if quantifiers are interpreted 
as relativized to arbitrary concepts. 
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(A3) For each formula p ,  if p is satisfiable then there is an 
interpretation q a n d  a possible world w such that q(p) 
is true at w. 

The proof of (A3) is rather involved and will occupy us for 
the next several pages. 

Given our set F of first-order modal formulas, we can con- 
struct a corresponding set Fn of nonmodal first-order formulas 
by (1) adding a predicate ' W  ('is a possible world'), (2) add- 
ing a binary relation 'E(i,x)' ('x exists in world i'), (3) adding 
a place to each relation symbol (so that two-place relation 
symbols become three-place, etc.), and (4) adding an individ- 
ual constant '@' (to denote the actual world). Formulas of F 
can then be translated into formulas of Fn that intuitively "say 
the same thing" in the following recursive manner: 

(7.4) t("Rx1.. .xnl) = .xn@'; 
t(r-^) = "1t(p)l;  
t r (p~q) ' )  = "(t(p)~t(q))-]; 
t rOpl)  = r(Ax)[W(x) -Ã Sb(x/@)t(p)I1 (where x is 
some variable not occuring free in p); 
t(r(V;̂ ) = YVx)[E(@,x) A t(p)I1. 

Given a model (w,W,U,D,p) for F ,  we can construct a first- 
order model for FQ that preserves truth under the translation 
t. Let us define: 

(7.5) If (w,W,U,D,p) is a model for F ,  (D,() is thefirst- 
order model derived from (w, W,U,D, p) iff: 
(a) D = U IJ W; 
(b) Â£(@ = w; 
(c) Â£(W = w ;  
(d) ( (E )  = {(i,x)l iEW and XED(;)}; 
(e) if R is an n-place relation symbol, ^(R) = 

{(xl ,..., xn)\ i E W  and (xi ,..., xn)â‚¬p(i,R) 

(7.6) If (D,Q is a first-order model for Fn and iEW, is 
just like ( except that ((@) = i. 

We then have the following simple lemma: 
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(7.7) If (w,W,U,D,a) is a model for F and (D,[) is the first 
order model derived from (w , W ,D,U, p) then: 
(a) for any p in F and i in W, p is true in (i,W ,U,D,(JI) 

iff t(p) is true in ( ~ , p ) ;  
(b) for any n-formula p of F and for any i in W,  if 

xi ,..., xnâ‚ then (xl ,..., xn) satisfies p in 
(i, W ,U,D, p) iff (xl , . . . ,xn,i) satisfies t(p) in ( D , f 3 ) .  

The translation of first-order modal formulas into first-order 
nonmodal formulas enables us to use certain facts about non- 
modal first-order logic in establishing (A3). Let us say that a 
model (D,[) is generated by an interpretation r\ iff (1) D is 
the extension of a,,; (2) for each individual constant c, [(c) is 
the object denoted by ~ ( c ) ;  and (3) for each relation symbol 
R, [(R) is the extension of r\(R). An arithmetical interpreta- 
tion of FQ is an interpretation r\ such that: for each n-place 
relation symbol R of Fn, r\(R) is an n-place concept definable 
in the language of first-order arithmetic; for the sole individual 
constant '@', q(@) is a propositional designator that is a def- 
inite description definable in the language of first-order arith- 
metic; and quantifiers are relativized to the concept N of being 
a natural number. Then an arithmetical model for Fa is a first- 
order model (w,Q that is generated by an arithmetical inter- 
pretation T} for Fn. The following theorem is due to Kreisel 
[1950]: 

(7.8) If p is a formula of Fn and p has a model then p has 
an arithmetical model. 

We now prove (A3) as follows. Suppose pâ‚ and p has a 
model. By (7.7), t(p) has a model, so by (7.8), t(p) has an 
arithmetical model (a),ko). If UW) = a), let [ = &. If to (W 
# a), then we construct a new model (a),[) in the following 
way. Let w0 be the first number in to, and then define: 
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The effect of this construction is to make all natural numbers 
not in UW) duplicates of w0 when viewed as possible worlds. 
It is then trivial to prove by induction on the length of q: 

(7.9) (a) If qEF then t(q) is true in (w,Q iff t(q) is true in 
(@,So);  and 

(b) if q is an n-formula of F and u is an n-tuple, a 
satisfies t(q) in (w,Q iff a satisfies t(q) in (w,&). 

(w,Q is an arithmetical model because (w,i,J is, so let a be 
an arithmetical interpretation of Fa that generates (to,^). Let 
P be the concept expressed by rx is finite and there are exactly 
x red objects in the world, or x = 0 and there are infinitely 
many red objects in the world1, and for each natural number 
i let 8, be a propositional designator that is necessarily such 
that it designates i.20 Where i = &@), let 8, = a(@). Clearly, 
for each i ,  the proposition (3:8,) is possible. Furthermore, 
(3i)[(N:i) & (p:i)] is necessary. For each iGw, construct the 
interpretation a, of FQ that is just like a except that a(@) = 
8,. 

Our proof of (A3) will turn upon the fact that as the a, are 
arithmetical interpretations, for any closed formula q, a,(q) is 
true iff it is necessarily true, and for any open formula q,  u 
exemplifies ai(q) iff u is necessarily such that it exemplifies 
a,(q). Using this fact we prove the crucial lemma of our ad- 
equacy theorem: 

(7.10) (a) If qEF then 0(3i)[((P:8,) & ai(t(q))) is true] iff 
(3i)[ai(t(q)) is true]; and 

(b) if q is an n-formula of F and a an n-tuple of 
natural numbers, 0(3i)[(P:8,) is true and u ex- 
emplifies a,(t(q))] iff (3i)[u exemplifies a,(t(q))]. 

Proof: We will only explicitly consider the case of n-for- 
mulas, the case of closed formulas being analogous. a, is 
an arithmetical interpretation, so either Do,,(u exemplifies 
a,(q)) or a , , ( u  does not exemplify a,(q)). If 0(3i)[(@:8,) is 

20 Such designators are readily available. For example, So might be the 
definite description 'the smallest natural number', 8, might be 'the smallest 
natural number larger than O', and so on. 
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true and u exemplifies a,(t(q))], then for some (GOD, OU,,(u 
exemplifies a,(t(q))). Conversely, if u exemplifies a,(t(q)), 
then LlU,,(u exemplifies ai(t(q))). 0[(@:8,) is true], so by S5, 
0[(3:8,) is true and u exemplifies a,(t(q))]. Hence 0(3i)[(3:8,) 
is true and u exemplifies a,(t(q))]. 

Next, let us enrich the language Fn by adding an individual 
constant k, for each jâ‚ and letting a,(k,) = 5,. Then an ob- 
vious lemma that we will use below is: 

(7.11) (a) If q â ‚  then a@b(k,I@)t(q) is true iff a,(t(q)) is 
true; and 

(b) if q is an n-formula of F and u is an n-tuple of 
natural numbers, then u exemplifies 
a,(Sb(kjl@)t(q) iff u exemplifies aj(t(q)). 

Next construct the interpretation q of F as follows. Let T 

be the propositional designator ii(3:i). q relativizes quantifiers 
to (a(E):~,x), and for each n-place relation symbol R of F, 
q(R) = (a(R):xl,. . . ,x.,,T). Note that Nec((Vx) x = 7). We then 
prove: 

(7.12) (a) If qGF then q(q) is true iff (3i)[((P:8,)&ai(t(q))) 
is true]; and 

(b) if q is an n-formula of F and u is an n-tuple then 
u exemplifies q(q) iff (3i)[(P:8,) is true and u 
exemplifies a,(t(q))] . 

Proof by induction on the length of q (we only explicitly 
discuss the case of n-formulas, the case of closed formulas 
being analogous): 
(i) Suppose q = "Rx, . . .xJ. u exemplifies q(Rl.. .xn) iff u 
exemplifies (a(R):xl,. . . ,x,,,T), iff cr exemplifies (3i)[(P:i) & 
(a(R):x1,. . . ,x,,,i)], iff (3i)[(3:5,) is true and u exemplifies 
(a(R):x,, . . . ,xn ,^,)I, iff (3i)[(3:8,) is true and u exemplifies 
rx,(t(Rx1.. .xn))]. 
(ii) and (iii), the cases of negation and conjunction, are trivial. 
(iv) Suppose q = "Or1. Then: 

u exemplifies q (0 r )  
iff u exemplifies O d r )  
iff 0 u exemplifies q(r) 
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iff 0(3i)((@:6,) is true and u exemplifies a,(t(r))) 
iff (3;) u exemplifies a,(t(r)) (by (7.10)) 
iff (3j) u exemplifies a,(t(r)) 
iff (3j)[u exemplifies a,(t(r)) and (3i)((P:8,) is true)] 
iff (3i)(3j)[(@:Eii) is true and u exemplifies 
ai(Sb(kj/@)t(r))I (by (7.1 1)) 
iff (3i)((@:8,) is true and (3j)[(a(W):tij is true and u ex- 
emplifies ai(Sb(kj/@)t(r))]) (because Â£,(W = w) 
iff (3i)(u exemplifies (3j)[(a(W)Â¥Â¥ & 
a,(Sb(kj/@)t(r))] and (@:a,) is true) 
iff (3i)(u exemplifies ai((3j)[Wj & 
Sb(kj/@)t(r)] & (@:8,) is true) 
iff (3i)[u exemplifies q( t(0r))  & (@:a,) is true]. 

(v) Suppose q = "(3x)r1. If x is the kth variable to occur 
free in r ,  listed in order of occurrence, let u ( j )  be the 
result of inserting j between the (k- 1)th and the kth 
place in the sequence u .  Then: 
u exemplifies q((3x)r) 
iff (3j)[j  exemplifies (a(E):~,x)  & q(t(r))] 
iff (3j)(j  exemplifies (a(E):~,x) & u ( j )  exemplifies 
q(t(r))l 
iff (3j)(j  exemplifies (a(E):~,x) & (3i)[(@:8,) is true and 
u ( j )  exemplifies a,(t(r))]) 
iff (3i)(3j)(j exemplifies (a(E):8,,x) and (@:a,) is true 
and a ( / )  exemplifies a,(t(r))]) 
iff (3i)((@:8,) is true and (I/)[/ exemplifies (a(E):S,,x) 
and u ( j )  exemplifies a,(t(r))]) 
iff (3i)((@:8,) is true and (3j)[j  exemplifies a,(E(@,x)) 
and a ( / )  exemplifies a,(t(r))]) 
iff (3i)((@:8,) is true and u exemplifies (3j)[(ai(E(@,j) 
& t(r)l) 
iff (3i)[(@:8,) is true and u exemplifies ai(t((3x)r))]. 

Finally, we can conclude that (A3) is true. Recalling that p 
is the formula with which we began and that (co,{) is a model 
of t(p), we have: 

(7.13) There is a world w such that q(p) is true at w. 
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Proof: Let i = a(@). Then a(t(p)) = a,(t(p)), so a,(t(p)) 
is true and hence necessary. (P:8,) is possibly true, so [((3:5,) 
& a,(t(p))] is possibly true. Then by (7.12), q(p) is possibly 
true, i.e., there is a world at which q(p) is true. 

By virtue of theorem (7.13), the formal semantics for first- 
order modal logic is adequate for (F,T) .  This is true despite 
the fact that the semantics makes heuristic use of such prob- 
lematic notions as "the set of all possible objects". We have 
not, however, succeeded in establishing that the semantics is 
strongly adequate. The obstacle to converting our argument 
into a proof of strong adequacy is the use of Kreisel's theorem 
(7.8). Kreisel's theorem gives us an arithmetical model for 
just the single formula t(p). If Kreisel's theorem gave us an 
arithmetical model for the entire set {t(q)\ q is true in M} (where 
M is the model for F with which we began), our argument 
would generate a proof of strong adequacy. However, it is not 
true that every satisfiable set of formulas has an arithmetical 
model, so strong adequacy cannot be proven in this way. Let 
us say that a set of integers is arithmetical iff it is the extension 
of some monadic concept definable in the language of first- 
order arithmetic. A set of formulas is arithmetical iff the set 
of its Godel numbers is arithmetical. Kreisel's theorem is not 
applicable to arbitrary sets of formulas, but it is applicable to 
arithmetical sets of formulas, with the result that we can prove 
the following as above: 

(7.14) If I- is an arithmetical set of formulas and I- is sa- 
tisfiable, then there is an interpretation q and a world 
w such that for every p in r, q(p) is true in w. 

Combining this with (Al) we obtain: 

(7.15) If I- is an arithmetical set of formulas, then I- is sa- 
tisfiable iff F is consistentu. 

This is weaker than strong adequacy, which would require the 
analogous principle for non-arithmetical sets of formulas as 
well. Our inability to prove strong adequacy indicates that we 
must beware what our formal semantics tells us about the se- 
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mantical implication relation. Semantical implication may not 
coincide with logical consequence. However, as we almost 
always deal with arithmetical sets of formulas, this may not 
be as much of a problem as it first appears. 

For future reference, let us take note of precisely how Kre- 
isel's theorem is used in the proof of adequacy. Kreisel's theo- 
rem is used to give us an arithmetical model, and the signif- 
icance of the model being arithmetical is that it is generated 
by a corresponding arithmetical interpretation a such that a(t(p)) 
is true. The only fact that we use about the interpretation's 
being arithmetical is that for each formula q of Fn, necessar- 
ily, a(q) is true iff a(q) is necessary, and for each open for- 
mula q of Fn and each sequence u, necessarily, u exemplifies 
a(q) iff u is necessarily such that it exemplifies a(q)). Let us 
call this the noncontingency condition. Any other interpreta- 
tion that satisfied the noncontingency condition would work 
equally well. Let Mn be the model of Fn derived from our 
model M of F. If we could find some interpretation a* that 
( 1 )  generates Mn, and (2)  satisfies the noncontingency con- 
dition, then we could prove (7.12) for a*. By (7.7) and the 
fact that a* generates Mn, we have: 

(7.16) For each pâ‚¬ p is true in M iff a*(t(p)) is true. 

We have proven (7.12), so it is necessarily true. Conse- 
quently, letting i be the denotation of '@' in Mu we have for 
any F:  

D[if (3:8,) is true then (Vqâ‚¬r)(q(  is true iff a*(t(q)) is 
true)]. 

Letting F = {q\ q is true in M}, this entails: 

o[if (p:8,) is true then ((VqGF) q(q) is true iff (Vqâ‚¬ 
a*(t(q)) is true)]. 

(3:8,) is possibly true, so O [ ( V q â ‚ ¬  q(q) is true iff (VqGF) 
a*(t(q)) is true]. By the noncontingency condition, 

so by S 5 ,  O[(Vqâ‚¬ q(q) is true] iff (VqGF) a*(t(q)) is true, 
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i.e., there is a possible world w such that M == ( w , ~ ) .  Un- 
fortunately, I see no way to construct such an interpretation 
for propositional first-order modal logic. However, when we 
consider SOA first-order modal logic, we will be able to con- 
struct such an interpretation, and so it will follow that this 
semantics is strongly adequate for SOA first-order modal logic. 

7.2 Statemental and Linguistic First-Order Modal Logic 

Despite the fact that the semantics for first-order modal logic 
is based intuitively upon the identification of necessity with 
truth at all possible worlds, inspection of the preceding ar- 
gument reveals that we have nowhere used that identification. 
Furthermore, the propositions upon which the constructions 
are based are all statements as well. Consequently, the pre- 
ceding argument can be applied without change to establish 
that our semantics is also adequate for statemental first-order 
modal logic. Clearly, statemental first-order modal logic agrees 
uniformly with linguistic first-order modal logic, so it follows 
that our semantics is also adequate for the latter. 

7.3 SOA First-Order Modal Logic 

SOA first-order modal logic is basically similar to propo- 
sitional first-order modal logic, the difference being the same 
as the difference between SOA first-order logic and proposi- 
tional first-order logic. We can prove (Al) just as we did for 
propositional first-order modal logic. The major difference 
emerges when we consider (A2), which we could not prove 
for propositional first-order modal logic but which we can prove 
for SOA first-order modal logic. Let M be a model for F. It 
was remarked above that for the purpose of proving (A2) it 
suffices to find an interpretation a* that (1) generates Ma and 
(2) satisfies the noncontingency condition. Because of the greater 
ease in constructing properties and states of affairs, such an 
interpretation is easily constructed for SOA logic. The inter- 
pretation is the same as that used in section 5.3 for proving 
the strong adequacy of SOA first-order logic. To '@' we let 
a* assign the denotation of '@' in MD To each n-place re- 
lation symbol R of Fn we let a* assign the property of being 
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an n-tuple in the extension of R in Mu. That is (recalling that 
n-place properties are functions from n-tuples to states of af- 
fairs), a*(R) is that property that assigns to each n-tuple u the 
tautologous state of affairs if a satisfies R in Mu and the con- 
tradictory state of affairs otherwise. So constructed, a* clearly 
satisfies the noncontingency condition and generates Ma. It 
follows that (A2) holds and our semantics is strongly adequate 
for SOA first-order modal logic. 

The greater ease with which we can construct interpretations 
for SOA logics is extremely interesting. Traditional concep- 
tions of logic viewed it as studying "laws of thought" or, 
more recently, relations between propositions. But set-theo- 
retic semantics are better tailored to SOA logics. The reason 
is that such semantics define models to be any sets satisfying 
certain formal constraints. If every set were the extension of 
a concept, such models could always be described intension- 
ally in terms of concepts (as in the case of arithmetical models), 
and such descriptions could be turned into interpretations for 
propositional logics. But there is no reason to think that every 
set is the extension of a concept and, I would suppose, con- 
siderable reason to be suspicious of such a claim. Thus, it is 
quite natural to suspect that set-theoretic models may outstrip 
propositional interpretations, and hence set-theoretic seman- 
tics may not be strongly adequate for propositional logics. On 
the other hand, the concept of a property was defined suffi- 
ciently broadly that every set is the extension of a property, 
and so it is a simple matter to generate SOA interpretations 
from set-theoretic models. 

8. Assessment of Formal Semantics 

We are now in a position to answer the rather general ques- 
tion with which we began this chapter. Formal semantics does 
have a limited philosophical significance, although it does not 
have the all-pervasive significance sometimes attributed to it 
by logicians. To begin with, formal semantics attempts to 
characterize with mathematical precision the sets of formulas 
that are valid for the different concepts of validity we have 
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been able to make precise. The extent to which a particular 
semantics accomplishes this can be objectively evaluated, and 
we have done that for a number of the most popular formal 
semantical theories. 

It is often alleged that formal semantics provide us with 
analyses of logical concepts. That is not entirely accurate. A 
formal semantics by itself cannot provide us with an analysis. 
It can do that, however, when it is coupled with a character- 
ization of the surrogate relation. Such a characterization can- 
not be purely mathematical. It must proceed by relating the 
mathematical concept of a model to the philosophical concepts 
of an interpretation and a possible world. The effect of this is 
to turn the formal semantics into a realistic semantics. 

Perhaps the greatest obstacle to understanding the heuristic 
claims often made about possible worlds semantics is that they 
generally involve the misconception that models are formal 
surrogates for possible worlds. They are not. Rather, they are 
surrogates for ordered pairs (w,$ of possible worlds and inter- 
pretations (or in linguistic logics, for the triples (w,q,'n-)). This 
is of considerable importance. It is this that legitimizes models 
like (G,{G}). Given the framework established in this chapter, 
I believe we are finally in a position to make clear sense of 
what is going on in formal semantics and formal logic. 
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